Properties

Label 417.101
Modulus $417$
Conductor $417$
Order $138$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(417, base_ring=CyclotomicField(138)) M = H._module chi = DirichletCharacter(H, M([69,131]))
 
Copy content pari:[g,chi] = znchar(Mod(101,417))
 

Basic properties

Modulus: \(417\)
Conductor: \(417\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(138\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 417.p

\(\chi_{417}(2,\cdot)\) \(\chi_{417}(17,\cdot)\) \(\chi_{417}(26,\cdot)\) \(\chi_{417}(32,\cdot)\) \(\chi_{417}(50,\cdot)\) \(\chi_{417}(53,\cdot)\) \(\chi_{417}(56,\cdot)\) \(\chi_{417}(68,\cdot)\) \(\chi_{417}(92,\cdot)\) \(\chi_{417}(98,\cdot)\) \(\chi_{417}(101,\cdot)\) \(\chi_{417}(104,\cdot)\) \(\chi_{417}(110,\cdot)\) \(\chi_{417}(119,\cdot)\) \(\chi_{417}(128,\cdot)\) \(\chi_{417}(134,\cdot)\) \(\chi_{417}(158,\cdot)\) \(\chi_{417}(161,\cdot)\) \(\chi_{417}(179,\cdot)\) \(\chi_{417}(197,\cdot)\) \(\chi_{417}(200,\cdot)\) \(\chi_{417}(209,\cdot)\) \(\chi_{417}(212,\cdot)\) \(\chi_{417}(224,\cdot)\) \(\chi_{417}(227,\cdot)\) \(\chi_{417}(248,\cdot)\) \(\chi_{417}(254,\cdot)\) \(\chi_{417}(269,\cdot)\) \(\chi_{417}(281,\cdot)\) \(\chi_{417}(290,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{69})$
Fixed field: Number field defined by a degree 138 polynomial (not computed)

Values on generators

\((140,280)\) → \((-1,e\left(\frac{131}{138}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 417 }(101, a) \) \(1\)\(1\)\(e\left(\frac{31}{69}\right)\)\(e\left(\frac{62}{69}\right)\)\(e\left(\frac{19}{138}\right)\)\(e\left(\frac{32}{69}\right)\)\(e\left(\frac{8}{23}\right)\)\(e\left(\frac{27}{46}\right)\)\(e\left(\frac{89}{138}\right)\)\(e\left(\frac{52}{69}\right)\)\(e\left(\frac{21}{23}\right)\)\(e\left(\frac{55}{69}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 417 }(101,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 417 }(101,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 417 }(101,·),\chi_{ 417 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 417 }(101,·)) \;\) at \(\; a,b = \) e.g. 1,2