sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(407, base_ring=CyclotomicField(90))
M = H._module
chi = DirichletCharacter(H, M([54,35]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(141,407))
         
     
    
  
   | Modulus: |  \(407\) |   |  
   | Conductor: |  \(407\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(90\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  even |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{407}(3,\cdot)\)
  \(\chi_{407}(4,\cdot)\)
  \(\chi_{407}(25,\cdot)\)
  \(\chi_{407}(58,\cdot)\)
  \(\chi_{407}(102,\cdot)\)
  \(\chi_{407}(104,\cdot)\)
  \(\chi_{407}(114,\cdot)\)
  \(\chi_{407}(115,\cdot)\)
  \(\chi_{407}(136,\cdot)\)
  \(\chi_{407}(141,\cdot)\)
  \(\chi_{407}(152,\cdot)\)
  \(\chi_{407}(169,\cdot)\)
  \(\chi_{407}(213,\cdot)\)
  \(\chi_{407}(225,\cdot)\)
  \(\chi_{407}(247,\cdot)\)
  \(\chi_{407}(262,\cdot)\)
  \(\chi_{407}(280,\cdot)\)
  \(\chi_{407}(284,\cdot)\)
  \(\chi_{407}(289,\cdot)\)
  \(\chi_{407}(300,\cdot)\)
  \(\chi_{407}(317,\cdot)\)
  \(\chi_{407}(324,\cdot)\)
  \(\chi_{407}(361,\cdot)\)
  \(\chi_{407}(400,\cdot)\)
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((112,298)\) → \((e\left(\frac{3}{5}\right),e\left(\frac{7}{18}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |       
    
    
      | \( \chi_{ 407 }(141, a) \) | 
      \(1\) | \(1\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{44}{45}\right)\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{29}{45}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{37}{45}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{8}{9}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)
         
     
    
    
        
        sage:chi.gauss_sum(a)
         
     
    
    
        
        pari:znchargauss(g,chi,a)
         
     
    
    
        
        sage:chi.jacobi_sum(n)
         
     
    
    
        
        sage:chi.kloosterman_sum(a,b)