| L(s)  = 1  |   + (0.997 − 0.0697i)2-s   + (0.848 − 0.529i)3-s   + (0.990 − 0.139i)4-s   + (−0.559 + 0.829i)5-s   + (0.809 − 0.587i)6-s   + (−0.615 − 0.788i)7-s   + (0.978 − 0.207i)8-s   + (0.438 − 0.898i)9-s   + (−0.5 + 0.866i)10-s     + (0.766 − 0.642i)12-s   + (0.719 − 0.694i)13-s   + (−0.669 − 0.743i)14-s   + (−0.0348 + 0.999i)15-s   + (0.961 − 0.275i)16-s   + (0.719 + 0.694i)17-s   + (0.374 − 0.927i)18-s  + ⋯ | 
 
| L(s)  = 1  |   + (0.997 − 0.0697i)2-s   + (0.848 − 0.529i)3-s   + (0.990 − 0.139i)4-s   + (−0.559 + 0.829i)5-s   + (0.809 − 0.587i)6-s   + (−0.615 − 0.788i)7-s   + (0.978 − 0.207i)8-s   + (0.438 − 0.898i)9-s   + (−0.5 + 0.866i)10-s     + (0.766 − 0.642i)12-s   + (0.719 − 0.694i)13-s   + (−0.669 − 0.743i)14-s   + (−0.0348 + 0.999i)15-s   + (0.961 − 0.275i)16-s   + (0.719 + 0.694i)17-s   + (0.374 − 0.927i)18-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 407 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.767 - 0.640i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 407 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.767 - 0.640i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(\frac{1}{2})\)  | 
            \(\approx\) | 
             \(2.778754857 - 1.007338069i\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(2.778754857 - 1.007338069i\)  | 
    
    
        
      |  \(L(1)\)  | 
            \(\approx\) | 
       \(2.168818533 - 0.4752553710i\)  | 
          
    
      |  \(L(1)\)  | 
            \(\approx\) | 
       \(2.168818533 - 0.4752553710i\)  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | 
|---|
| bad | 11 |  \( 1 \)  | 
 | 37 |  \( 1 \)  | 
| good | 2 |  \( 1 + (0.997 - 0.0697i)T \)  | 
 | 3 |  \( 1 + (0.848 - 0.529i)T \)  | 
 | 5 |  \( 1 + (-0.559 + 0.829i)T \)  | 
 | 7 |  \( 1 + (-0.615 - 0.788i)T \)  | 
 | 13 |  \( 1 + (0.719 - 0.694i)T \)  | 
 | 17 |  \( 1 + (0.719 + 0.694i)T \)  | 
 | 19 |  \( 1 + (-0.848 + 0.529i)T \)  | 
 | 23 |  \( 1 + (0.5 - 0.866i)T \)  | 
 | 29 |  \( 1 + (-0.669 + 0.743i)T \)  | 
 | 31 |  \( 1 + (0.809 + 0.587i)T \)  | 
 | 41 |  \( 1 + (-0.882 - 0.469i)T \)  | 
 | 43 |  \( 1 - T \)  | 
 | 47 |  \( 1 + (0.669 + 0.743i)T \)  | 
 | 53 |  \( 1 + (0.559 + 0.829i)T \)  | 
 | 59 |  \( 1 + (-0.0348 + 0.999i)T \)  | 
 | 61 |  \( 1 + (-0.438 - 0.898i)T \)  | 
 | 67 |  \( 1 + (-0.939 + 0.342i)T \)  | 
 | 71 |  \( 1 + (-0.997 - 0.0697i)T \)  | 
 | 73 |  \( 1 + (0.309 + 0.951i)T \)  | 
 | 79 |  \( 1 + (-0.961 - 0.275i)T \)  | 
 | 83 |  \( 1 + (-0.719 - 0.694i)T \)  | 
 | 89 |  \( 1 + (0.939 + 0.342i)T \)  | 
 | 97 |  \( 1 + (-0.913 + 0.406i)T \)  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \  (1 - \alpha_{p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−24.44628595825842196160862995384, −23.514853155706242093059856390109, −22.70877451219772923559927819478, −21.59794885237191024594381841255, −21.10027064270315002607251096811, −20.32574741483599787501497257139, −19.393483153827098945417325975209, −18.83965722334095574677463748969, −16.84743068266870421854292563822, −16.239712109331597883542555440278, −15.4035284400282953908652503393, −14.97273128911035705102999346148, −13.55256269205123746093977111460, −13.210146736361829664224726712149, −12.017930626780507802413740314880, −11.33026999778687130113795574293, −9.897222682076927347475173059556, −8.952472227654595498386930974261, −8.10622172989869834732570881650, −6.97883871369655752539199065515, −5.68587459098008567997741423529, −4.73952060482465926027959254676, −3.832664675527357225341532729057, −2.98195368312937716303780598331, −1.7773008228065655711706635325, 
1.34716240196885194218465951794, 2.81877083400667225464281417015, 3.46592281892810472749095690415, 4.21471867759716762268427380658, 6.016725022556351902325845555503, 6.769529985384743691984916842522, 7.56119275655336332773126949844, 8.48137744652972827526125689182, 10.26275561848538055633914249967, 10.67095271782548345453694099252, 12.08156766529875086309660735961, 12.827203523316393298057659657218, 13.60420102715734629504112661653, 14.49710946000252011571214150979, 15.07399839309570805627341540243, 15.98302997233872347792495227479, 17.0774978009699705117769206243, 18.58820764744890422602007277565, 19.15284213292787921964425689643, 20.018492659576322811479030104477, 20.64036110094121405654863767944, 21.65334924682055708247393857524, 22.82947353485820202597458974223, 23.259604918035712925072466516890, 23.964832778669933794103127064585