Properties

Label 40320.bdo
Modulus $40320$
Conductor $40320$
Order $96$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(40320, base_ring=CyclotomicField(96)) M = H._module chi = DirichletCharacter(H, M([48,57,32,24,64])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(67,40320)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(40320\)
Conductor: \(40320\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(96\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{96})$
Fixed field: Number field defined by a degree 96 polynomial

First 31 of 32 characters in Galois orbit

Character \(-1\) \(1\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{40320}(67,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{31}{96}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{95}{96}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{83}{96}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{41}{96}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{77}{96}\right)\)
\(\chi_{40320}(4363,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{32}\right)\) \(e\left(\frac{41}{96}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{73}{96}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{85}{96}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{79}{96}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{43}{96}\right)\)
\(\chi_{40320}(4603,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{37}{96}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{5}{96}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{65}{96}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{83}{96}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{95}{96}\right)\)
\(\chi_{40320}(4867,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{32}\right)\) \(e\left(\frac{47}{96}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{79}{96}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{67}{96}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{25}{96}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{61}{96}\right)\)
\(\chi_{40320}(5107,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{43}{96}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{11}{96}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{47}{96}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{29}{96}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{17}{96}\right)\)
\(\chi_{40320}(9403,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{53}{96}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{85}{96}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{49}{96}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{67}{96}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{79}{96}\right)\)
\(\chi_{40320}(9643,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{32}\right)\) \(e\left(\frac{49}{96}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{17}{96}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{29}{96}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{71}{96}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{35}{96}\right)\)
\(\chi_{40320}(9907,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{32}\right)\) \(e\left(\frac{59}{96}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{91}{96}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{31}{96}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{13}{96}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{1}{96}\right)\)
\(\chi_{40320}(10147,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{55}{96}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{23}{96}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{11}{96}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{17}{96}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{53}{96}\right)\)
\(\chi_{40320}(14443,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{65}{96}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{1}{96}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{13}{96}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{55}{96}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{19}{96}\right)\)
\(\chi_{40320}(14683,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{61}{96}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{29}{96}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{89}{96}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{59}{96}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{71}{96}\right)\)
\(\chi_{40320}(14947,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{71}{96}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{7}{96}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{91}{96}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{96}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{37}{96}\right)\)
\(\chi_{40320}(15187,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{67}{96}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{35}{96}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{71}{96}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{96}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{89}{96}\right)\)
\(\chi_{40320}(19483,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{32}\right)\) \(e\left(\frac{77}{96}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{13}{96}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{73}{96}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{43}{96}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{55}{96}\right)\)
\(\chi_{40320}(19723,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{32}\right)\) \(e\left(\frac{73}{96}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{41}{96}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{53}{96}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{47}{96}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{11}{96}\right)\)
\(\chi_{40320}(19987,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{32}\right)\) \(e\left(\frac{83}{96}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{19}{96}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{55}{96}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{85}{96}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{73}{96}\right)\)
\(\chi_{40320}(20227,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{32}\right)\) \(e\left(\frac{79}{96}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{47}{96}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{35}{96}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{89}{96}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{29}{96}\right)\)
\(\chi_{40320}(24523,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{89}{96}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{25}{96}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{37}{96}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{31}{96}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{91}{96}\right)\)
\(\chi_{40320}(24763,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{85}{96}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{53}{96}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{17}{96}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{35}{96}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{47}{96}\right)\)
\(\chi_{40320}(25027,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{95}{96}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{31}{96}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{19}{96}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{73}{96}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{13}{96}\right)\)
\(\chi_{40320}(25267,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{32}\right)\) \(e\left(\frac{91}{96}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{59}{96}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{95}{96}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{77}{96}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{65}{96}\right)\)
\(\chi_{40320}(29563,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{5}{96}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{37}{96}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{1}{96}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{19}{96}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{31}{96}\right)\)
\(\chi_{40320}(29803,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{1}{96}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{65}{96}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{77}{96}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{23}{96}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{83}{96}\right)\)
\(\chi_{40320}(30067,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{11}{96}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{43}{96}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{79}{96}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{61}{96}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{49}{96}\right)\)
\(\chi_{40320}(30307,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{7}{96}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{71}{96}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{59}{96}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{65}{96}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{5}{96}\right)\)
\(\chi_{40320}(34603,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{32}\right)\) \(e\left(\frac{17}{96}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{49}{96}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{61}{96}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{96}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{67}{96}\right)\)
\(\chi_{40320}(34843,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{32}\right)\) \(e\left(\frac{13}{96}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{77}{96}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{41}{96}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{96}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{23}{96}\right)\)
\(\chi_{40320}(35107,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{23}{96}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{55}{96}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{43}{96}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{49}{96}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{85}{96}\right)\)
\(\chi_{40320}(35347,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{32}\right)\) \(e\left(\frac{19}{96}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{83}{96}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{23}{96}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{53}{96}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{41}{96}\right)\)
\(\chi_{40320}(39643,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{29}{96}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{61}{96}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{25}{96}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{91}{96}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{7}{96}\right)\)
\(\chi_{40320}(39883,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{25}{96}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{89}{96}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{5}{96}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{95}{96}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{59}{96}\right)\)