sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(40320, base_ring=CyclotomicField(96))
M = H._module
chi = DirichletCharacter(H, M([48,87,32,72,64]))
pari:[g,chi] = znchar(Mod(9643,40320))
| Modulus: | \(40320\) | |
| Conductor: | \(40320\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(96\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{40320}(67,\cdot)\)
\(\chi_{40320}(4363,\cdot)\)
\(\chi_{40320}(4603,\cdot)\)
\(\chi_{40320}(4867,\cdot)\)
\(\chi_{40320}(5107,\cdot)\)
\(\chi_{40320}(9403,\cdot)\)
\(\chi_{40320}(9643,\cdot)\)
\(\chi_{40320}(9907,\cdot)\)
\(\chi_{40320}(10147,\cdot)\)
\(\chi_{40320}(14443,\cdot)\)
\(\chi_{40320}(14683,\cdot)\)
\(\chi_{40320}(14947,\cdot)\)
\(\chi_{40320}(15187,\cdot)\)
\(\chi_{40320}(19483,\cdot)\)
\(\chi_{40320}(19723,\cdot)\)
\(\chi_{40320}(19987,\cdot)\)
\(\chi_{40320}(20227,\cdot)\)
\(\chi_{40320}(24523,\cdot)\)
\(\chi_{40320}(24763,\cdot)\)
\(\chi_{40320}(25027,\cdot)\)
\(\chi_{40320}(25267,\cdot)\)
\(\chi_{40320}(29563,\cdot)\)
\(\chi_{40320}(29803,\cdot)\)
\(\chi_{40320}(30067,\cdot)\)
\(\chi_{40320}(30307,\cdot)\)
\(\chi_{40320}(34603,\cdot)\)
\(\chi_{40320}(34843,\cdot)\)
\(\chi_{40320}(35107,\cdot)\)
\(\chi_{40320}(35347,\cdot)\)
\(\chi_{40320}(39643,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((8191,23941,17921,32257,28801)\) → \((-1,e\left(\frac{29}{32}\right),e\left(\frac{1}{3}\right),-i,e\left(\frac{2}{3}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
| \( \chi_{ 40320 }(9643, a) \) |
\(1\) | \(1\) | \(e\left(\frac{17}{32}\right)\) | \(e\left(\frac{49}{96}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{17}{96}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{29}{96}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{71}{96}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{35}{96}\right)\) |
sage:chi.jacobi_sum(n)