Properties

Label 40320.9643
Modulus $40320$
Conductor $40320$
Order $96$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(40320, base_ring=CyclotomicField(96)) M = H._module chi = DirichletCharacter(H, M([48,87,32,72,64]))
 
Copy content pari:[g,chi] = znchar(Mod(9643,40320))
 

Basic properties

Modulus: \(40320\)
Conductor: \(40320\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(96\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 40320.bdo

\(\chi_{40320}(67,\cdot)\) \(\chi_{40320}(4363,\cdot)\) \(\chi_{40320}(4603,\cdot)\) \(\chi_{40320}(4867,\cdot)\) \(\chi_{40320}(5107,\cdot)\) \(\chi_{40320}(9403,\cdot)\) \(\chi_{40320}(9643,\cdot)\) \(\chi_{40320}(9907,\cdot)\) \(\chi_{40320}(10147,\cdot)\) \(\chi_{40320}(14443,\cdot)\) \(\chi_{40320}(14683,\cdot)\) \(\chi_{40320}(14947,\cdot)\) \(\chi_{40320}(15187,\cdot)\) \(\chi_{40320}(19483,\cdot)\) \(\chi_{40320}(19723,\cdot)\) \(\chi_{40320}(19987,\cdot)\) \(\chi_{40320}(20227,\cdot)\) \(\chi_{40320}(24523,\cdot)\) \(\chi_{40320}(24763,\cdot)\) \(\chi_{40320}(25027,\cdot)\) \(\chi_{40320}(25267,\cdot)\) \(\chi_{40320}(29563,\cdot)\) \(\chi_{40320}(29803,\cdot)\) \(\chi_{40320}(30067,\cdot)\) \(\chi_{40320}(30307,\cdot)\) \(\chi_{40320}(34603,\cdot)\) \(\chi_{40320}(34843,\cdot)\) \(\chi_{40320}(35107,\cdot)\) \(\chi_{40320}(35347,\cdot)\) \(\chi_{40320}(39643,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{96})$
Fixed field: Number field defined by a degree 96 polynomial

Values on generators

\((8191,23941,17921,32257,28801)\) → \((-1,e\left(\frac{29}{32}\right),e\left(\frac{1}{3}\right),-i,e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 40320 }(9643, a) \) \(1\)\(1\)\(e\left(\frac{17}{32}\right)\)\(e\left(\frac{49}{96}\right)\)\(e\left(\frac{19}{24}\right)\)\(e\left(\frac{17}{96}\right)\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{29}{96}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{71}{96}\right)\)\(e\left(\frac{41}{48}\right)\)\(e\left(\frac{35}{96}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 40320 }(9643,a) \;\) at \(\;a = \) e.g. 2