Properties

Label 40320.37937
Modulus $40320$
Conductor $10080$
Order $24$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(40320, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([0,15,4,6,16]))
 
Copy content pari:[g,chi] = znchar(Mod(37937,40320))
 

Basic properties

Modulus: \(40320\)
Conductor: \(10080\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(24\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{10080}(1397,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 40320.uh

\(\chi_{40320}(2417,\cdot)\) \(\chi_{40320}(4433,\cdot)\) \(\chi_{40320}(17777,\cdot)\) \(\chi_{40320}(19793,\cdot)\) \(\chi_{40320}(22577,\cdot)\) \(\chi_{40320}(24593,\cdot)\) \(\chi_{40320}(37937,\cdot)\) \(\chi_{40320}(39953,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: Number field defined by a degree 24 polynomial

Values on generators

\((8191,23941,17921,32257,28801)\) → \((1,e\left(\frac{5}{8}\right),e\left(\frac{1}{6}\right),i,e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 40320 }(37937, a) \) \(1\)\(1\)\(e\left(\frac{23}{24}\right)\)\(e\left(\frac{11}{24}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{5}{24}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{13}{24}\right)\)\(1\)\(e\left(\frac{5}{24}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{13}{24}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 40320 }(37937,a) \;\) at \(\;a = \) e.g. 2