Properties

Label 10080.1397
Modulus $10080$
Conductor $10080$
Order $24$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(10080, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([0,15,4,6,16]))
 
Copy content pari:[g,chi] = znchar(Mod(1397,10080))
 

Basic properties

Modulus: \(10080\)
Conductor: \(10080\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(24\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 10080.tb

\(\chi_{10080}(653,\cdot)\) \(\chi_{10080}(893,\cdot)\) \(\chi_{10080}(1157,\cdot)\) \(\chi_{10080}(1397,\cdot)\) \(\chi_{10080}(5693,\cdot)\) \(\chi_{10080}(5933,\cdot)\) \(\chi_{10080}(6197,\cdot)\) \(\chi_{10080}(6437,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: Number field defined by a degree 24 polynomial

Values on generators

\((8191,3781,7841,2017,8641)\) → \((1,e\left(\frac{5}{8}\right),e\left(\frac{1}{6}\right),i,e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 10080 }(1397, a) \) \(1\)\(1\)\(e\left(\frac{23}{24}\right)\)\(e\left(\frac{11}{24}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{5}{24}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{13}{24}\right)\)\(1\)\(e\left(\frac{5}{24}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{13}{24}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 10080 }(1397,a) \;\) at \(\;a = \) e.g. 2