sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(10080, base_ring=CyclotomicField(24))
M = H._module
chi = DirichletCharacter(H, M([0,15,4,6,16]))
pari:[g,chi] = znchar(Mod(1397,10080))
| Modulus: | \(10080\) | |
| Conductor: | \(10080\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(24\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{10080}(653,\cdot)\)
\(\chi_{10080}(893,\cdot)\)
\(\chi_{10080}(1157,\cdot)\)
\(\chi_{10080}(1397,\cdot)\)
\(\chi_{10080}(5693,\cdot)\)
\(\chi_{10080}(5933,\cdot)\)
\(\chi_{10080}(6197,\cdot)\)
\(\chi_{10080}(6437,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((8191,3781,7841,2017,8641)\) → \((1,e\left(\frac{5}{8}\right),e\left(\frac{1}{6}\right),i,e\left(\frac{2}{3}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
| \( \chi_{ 10080 }(1397, a) \) |
\(1\) | \(1\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(1\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{13}{24}\right)\) |
sage:chi.jacobi_sum(n)