Properties

Label 10080.tb
Modulus $10080$
Conductor $10080$
Order $24$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(10080, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([0,21,20,18,8])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(653,10080)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(10080\)
Conductor: \(10080\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(24\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: Number field defined by a degree 24 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{10080}(653,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{23}{24}\right)\) \(1\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{23}{24}\right)\)
\(\chi_{10080}(893,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{19}{24}\right)\) \(1\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{19}{24}\right)\)
\(\chi_{10080}(1157,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{17}{24}\right)\) \(1\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{17}{24}\right)\)
\(\chi_{10080}(1397,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{13}{24}\right)\) \(1\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{13}{24}\right)\)
\(\chi_{10080}(5693,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{24}\right)\) \(1\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{11}{24}\right)\)
\(\chi_{10080}(5933,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{24}\right)\) \(1\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{24}\right)\)
\(\chi_{10080}(6197,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{24}\right)\) \(1\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{24}\right)\)
\(\chi_{10080}(6437,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{24}\right)\) \(1\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{24}\right)\)