Properties

Label 4032.gx
Modulus $4032$
Conductor $4032$
Order $48$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4032, base_ring=CyclotomicField(48)) M = H._module chi = DirichletCharacter(H, M([0,21,8,40])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(173,4032)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4032\)
Conductor: \(4032\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(48\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{48})\)
Fixed field: Number field defined by a degree 48 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(37\)
\(\chi_{4032}(173,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{29}{48}\right)\)
\(\chi_{4032}(437,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{48}\right)\)
\(\chi_{4032}(677,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{35}{48}\right)\)
\(\chi_{4032}(941,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{13}{48}\right)\)
\(\chi_{4032}(1181,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{41}{48}\right)\)
\(\chi_{4032}(1445,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{19}{48}\right)\)
\(\chi_{4032}(1685,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{47}{48}\right)\)
\(\chi_{4032}(1949,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{25}{48}\right)\)
\(\chi_{4032}(2189,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{48}\right)\)
\(\chi_{4032}(2453,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{31}{48}\right)\)
\(\chi_{4032}(2693,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{48}\right)\)
\(\chi_{4032}(2957,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{37}{48}\right)\)
\(\chi_{4032}(3197,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{17}{48}\right)\)
\(\chi_{4032}(3461,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{43}{48}\right)\)
\(\chi_{4032}(3701,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{23}{48}\right)\)
\(\chi_{4032}(3965,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{48}\right)\)