sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3871, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([38,14]))
pari:[g,chi] = znchar(Mod(23,3871))
Modulus: | \(3871\) | |
Conductor: | \(3871\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(21\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3871}(23,\cdot)\)
\(\chi_{3871}(529,\cdot)\)
\(\chi_{3871}(576,\cdot)\)
\(\chi_{3871}(1082,\cdot)\)
\(\chi_{3871}(1129,\cdot)\)
\(\chi_{3871}(1682,\cdot)\)
\(\chi_{3871}(2188,\cdot)\)
\(\chi_{3871}(2741,\cdot)\)
\(\chi_{3871}(2788,\cdot)\)
\(\chi_{3871}(3294,\cdot)\)
\(\chi_{3871}(3341,\cdot)\)
\(\chi_{3871}(3847,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2845,1030)\) → \((e\left(\frac{19}{21}\right),e\left(\frac{1}{3}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
\( \chi_{ 3871 }(23, a) \) |
\(1\) | \(1\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{20}{21}\right)\) |
sage:chi.jacobi_sum(n)