Properties

Label 3871.23
Modulus $3871$
Conductor $3871$
Order $21$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3871, base_ring=CyclotomicField(42)) M = H._module chi = DirichletCharacter(H, M([38,14]))
 
Copy content pari:[g,chi] = znchar(Mod(23,3871))
 

Basic properties

Modulus: \(3871\)
Conductor: \(3871\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(21\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3871.z

\(\chi_{3871}(23,\cdot)\) \(\chi_{3871}(529,\cdot)\) \(\chi_{3871}(576,\cdot)\) \(\chi_{3871}(1082,\cdot)\) \(\chi_{3871}(1129,\cdot)\) \(\chi_{3871}(1682,\cdot)\) \(\chi_{3871}(2188,\cdot)\) \(\chi_{3871}(2741,\cdot)\) \(\chi_{3871}(2788,\cdot)\) \(\chi_{3871}(3294,\cdot)\) \(\chi_{3871}(3341,\cdot)\) \(\chi_{3871}(3847,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 21 polynomial

Values on generators

\((2845,1030)\) → \((e\left(\frac{19}{21}\right),e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(11\)\(12\)
\( \chi_{ 3871 }(23, a) \) \(1\)\(1\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{5}{21}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{19}{21}\right)\)\(e\left(\frac{2}{21}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{10}{21}\right)\)\(e\left(\frac{16}{21}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{20}{21}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3871 }(23,a) \;\) at \(\;a = \) e.g. 2