![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3864, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([33,33,33,11,27]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3864, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([33,33,33,11,27]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(563,3864))
        pari:[g,chi] = znchar(Mod(563,3864))
         
     
    
  
   | Modulus: | \(3864\) |  | 
   | Conductor: | \(3864\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(66\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{3864}(227,\cdot)\)
  \(\chi_{3864}(467,\cdot)\)
  \(\chi_{3864}(563,\cdot)\)
  \(\chi_{3864}(635,\cdot)\)
  \(\chi_{3864}(803,\cdot)\)
  \(\chi_{3864}(971,\cdot)\)
  \(\chi_{3864}(1307,\cdot)\)
  \(\chi_{3864}(1571,\cdot)\)
  \(\chi_{3864}(1643,\cdot)\)
  \(\chi_{3864}(1739,\cdot)\)
  \(\chi_{3864}(1811,\cdot)\)
  \(\chi_{3864}(1907,\cdot)\)
  \(\chi_{3864}(2075,\cdot)\)
  \(\chi_{3864}(2315,\cdot)\)
  \(\chi_{3864}(2411,\cdot)\)
  \(\chi_{3864}(2747,\cdot)\)
  \(\chi_{3864}(2915,\cdot)\)
  \(\chi_{3864}(2987,\cdot)\)
  \(\chi_{3864}(3323,\cdot)\)
  \(\chi_{3864}(3419,\cdot)\)
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((967,1933,1289,2761,2857)\) → \((-1,-1,-1,e\left(\frac{1}{6}\right),e\left(\frac{9}{22}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) | 
    
    
      | \( \chi_{ 3864 }(563, a) \) | \(1\) | \(1\) | \(e\left(\frac{8}{33}\right)\) | \(e\left(\frac{28}{33}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{35}{66}\right)\) | \(e\left(\frac{32}{33}\right)\) | \(e\left(\frac{16}{33}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{4}{33}\right)\) | \(e\left(\frac{14}{33}\right)\) | \(e\left(\frac{10}{11}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)