sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3864, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([33,33,33,55,51]))
pari:[g,chi] = znchar(Mod(2315,3864))
Modulus: | \(3864\) | |
Conductor: | \(3864\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(66\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3864}(227,\cdot)\)
\(\chi_{3864}(467,\cdot)\)
\(\chi_{3864}(563,\cdot)\)
\(\chi_{3864}(635,\cdot)\)
\(\chi_{3864}(803,\cdot)\)
\(\chi_{3864}(971,\cdot)\)
\(\chi_{3864}(1307,\cdot)\)
\(\chi_{3864}(1571,\cdot)\)
\(\chi_{3864}(1643,\cdot)\)
\(\chi_{3864}(1739,\cdot)\)
\(\chi_{3864}(1811,\cdot)\)
\(\chi_{3864}(1907,\cdot)\)
\(\chi_{3864}(2075,\cdot)\)
\(\chi_{3864}(2315,\cdot)\)
\(\chi_{3864}(2411,\cdot)\)
\(\chi_{3864}(2747,\cdot)\)
\(\chi_{3864}(2915,\cdot)\)
\(\chi_{3864}(2987,\cdot)\)
\(\chi_{3864}(3323,\cdot)\)
\(\chi_{3864}(3419,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((967,1933,1289,2761,2857)\) → \((-1,-1,-1,e\left(\frac{5}{6}\right),e\left(\frac{17}{22}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 3864 }(2315, a) \) |
\(1\) | \(1\) | \(e\left(\frac{31}{33}\right)\) | \(e\left(\frac{26}{33}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{49}{66}\right)\) | \(e\left(\frac{25}{33}\right)\) | \(e\left(\frac{29}{33}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{32}{33}\right)\) | \(e\left(\frac{13}{33}\right)\) | \(e\left(\frac{3}{11}\right)\) |
sage:chi.jacobi_sum(n)