Properties

Label 3864.3487
Modulus $3864$
Conductor $92$
Order $22$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3864, base_ring=CyclotomicField(22)) M = H._module chi = DirichletCharacter(H, M([11,0,0,0,21]))
 
Copy content pari:[g,chi] = znchar(Mod(3487,3864))
 

Basic properties

Modulus: \(3864\)
Conductor: \(92\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(22\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{92}(83,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3864.de

\(\chi_{3864}(295,\cdot)\) \(\chi_{3864}(631,\cdot)\) \(\chi_{3864}(799,\cdot)\) \(\chi_{3864}(1303,\cdot)\) \(\chi_{3864}(1975,\cdot)\) \(\chi_{3864}(2311,\cdot)\) \(\chi_{3864}(3319,\cdot)\) \(\chi_{3864}(3487,\cdot)\) \(\chi_{3864}(3655,\cdot)\) \(\chi_{3864}(3823,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: \(\Q(\zeta_{92})^+\)

Values on generators

\((967,1933,1289,2761,2857)\) → \((-1,1,1,1,e\left(\frac{21}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(19\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 3864 }(3487, a) \) \(1\)\(1\)\(e\left(\frac{21}{22}\right)\)\(e\left(\frac{1}{11}\right)\)\(e\left(\frac{4}{11}\right)\)\(e\left(\frac{15}{22}\right)\)\(e\left(\frac{9}{11}\right)\)\(e\left(\frac{10}{11}\right)\)\(e\left(\frac{2}{11}\right)\)\(e\left(\frac{5}{22}\right)\)\(e\left(\frac{1}{22}\right)\)\(e\left(\frac{5}{11}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3864 }(3487,a) \;\) at \(\;a = \) e.g. 2