![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(385, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([45,40,54]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(385, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([45,40,54]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(193,385))
        pari:[g,chi] = znchar(Mod(193,385))
         
     
    
  
   | Modulus: | \(385\) |  | 
   | Conductor: | \(385\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(60\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{385}(2,\cdot)\)
  \(\chi_{385}(18,\cdot)\)
  \(\chi_{385}(72,\cdot)\)
  \(\chi_{385}(107,\cdot)\)
  \(\chi_{385}(123,\cdot)\)
  \(\chi_{385}(128,\cdot)\)
  \(\chi_{385}(172,\cdot)\)
  \(\chi_{385}(193,\cdot)\)
  \(\chi_{385}(228,\cdot)\)
  \(\chi_{385}(233,\cdot)\)
  \(\chi_{385}(277,\cdot)\)
  \(\chi_{385}(282,\cdot)\)
  \(\chi_{385}(303,\cdot)\)
  \(\chi_{385}(338,\cdot)\)
  \(\chi_{385}(347,\cdot)\)
  \(\chi_{385}(382,\cdot)\)
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((232,276,211)\) → \((-i,e\left(\frac{2}{3}\right),e\left(\frac{9}{10}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(12\) | \(13\) | \(16\) | \(17\) | 
    
    
      | \( \chi_{ 385 }(193, a) \) | \(1\) | \(1\) | \(e\left(\frac{59}{60}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{31}{60}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.gauss_sum(a)
        sage:chi.gauss_sum(a)
         
     
    
    
        ![Copy content]() pari:znchargauss(g,chi,a)
        pari:znchargauss(g,chi,a)
         
     
    
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.kloosterman_sum(a,b)
        sage:chi.kloosterman_sum(a,b)