sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(385, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([15,40,54]))
pari:[g,chi] = znchar(Mod(347,385))
| Modulus: | \(385\) | |
| Conductor: | \(385\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(60\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{385}(2,\cdot)\)
\(\chi_{385}(18,\cdot)\)
\(\chi_{385}(72,\cdot)\)
\(\chi_{385}(107,\cdot)\)
\(\chi_{385}(123,\cdot)\)
\(\chi_{385}(128,\cdot)\)
\(\chi_{385}(172,\cdot)\)
\(\chi_{385}(193,\cdot)\)
\(\chi_{385}(228,\cdot)\)
\(\chi_{385}(233,\cdot)\)
\(\chi_{385}(277,\cdot)\)
\(\chi_{385}(282,\cdot)\)
\(\chi_{385}(303,\cdot)\)
\(\chi_{385}(338,\cdot)\)
\(\chi_{385}(347,\cdot)\)
\(\chi_{385}(382,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((232,276,211)\) → \((i,e\left(\frac{2}{3}\right),e\left(\frac{9}{10}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(12\) | \(13\) | \(16\) | \(17\) |
| \( \chi_{ 385 }(347, a) \) |
\(1\) | \(1\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{37}{60}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{1}{60}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)