sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3751, base_ring=CyclotomicField(22))
M = H._module
chi = DirichletCharacter(H, M([17,11]))
pari:[g,chi] = znchar(Mod(681,3751))
Modulus: | \(3751\) | |
Conductor: | \(3751\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(22\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3751}(340,\cdot)\)
\(\chi_{3751}(681,\cdot)\)
\(\chi_{3751}(1022,\cdot)\)
\(\chi_{3751}(1363,\cdot)\)
\(\chi_{3751}(1704,\cdot)\)
\(\chi_{3751}(2045,\cdot)\)
\(\chi_{3751}(2386,\cdot)\)
\(\chi_{3751}(2727,\cdot)\)
\(\chi_{3751}(3068,\cdot)\)
\(\chi_{3751}(3409,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2543,2421)\) → \((e\left(\frac{17}{22}\right),-1)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
\( \chi_{ 3751 }(681, a) \) |
\(1\) | \(1\) | \(e\left(\frac{17}{22}\right)\) | \(-1\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(1\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{1}{22}\right)\) |
sage:chi.jacobi_sum(n)