Properties

Label 3751.681
Modulus $3751$
Conductor $3751$
Order $22$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3751, base_ring=CyclotomicField(22)) M = H._module chi = DirichletCharacter(H, M([17,11]))
 
Copy content pari:[g,chi] = znchar(Mod(681,3751))
 

Basic properties

Modulus: \(3751\)
Conductor: \(3751\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(22\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3751.bo

\(\chi_{3751}(340,\cdot)\) \(\chi_{3751}(681,\cdot)\) \(\chi_{3751}(1022,\cdot)\) \(\chi_{3751}(1363,\cdot)\) \(\chi_{3751}(1704,\cdot)\) \(\chi_{3751}(2045,\cdot)\) \(\chi_{3751}(2386,\cdot)\) \(\chi_{3751}(2727,\cdot)\) \(\chi_{3751}(3068,\cdot)\) \(\chi_{3751}(3409,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: Number field defined by a degree 22 polynomial

Values on generators

\((2543,2421)\) → \((e\left(\frac{17}{22}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(12\)
\( \chi_{ 3751 }(681, a) \) \(1\)\(1\)\(e\left(\frac{17}{22}\right)\)\(-1\)\(e\left(\frac{6}{11}\right)\)\(e\left(\frac{2}{11}\right)\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{9}{22}\right)\)\(e\left(\frac{7}{22}\right)\)\(1\)\(e\left(\frac{21}{22}\right)\)\(e\left(\frac{1}{22}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3751 }(681,a) \;\) at \(\;a = \) e.g. 2