L(s) = 1 | + (0.142 − 0.989i)2-s − 3-s + (−0.959 − 0.281i)4-s + (0.415 + 0.909i)5-s + (−0.142 + 0.989i)6-s + (−0.841 + 0.540i)7-s + (−0.415 + 0.909i)8-s + 9-s + (0.959 − 0.281i)10-s + (0.959 + 0.281i)12-s + (−0.959 − 0.281i)13-s + (0.415 + 0.909i)14-s + (−0.415 − 0.909i)15-s + (0.841 + 0.540i)16-s + (−0.654 + 0.755i)17-s + (0.142 − 0.989i)18-s + ⋯ |
L(s) = 1 | + (0.142 − 0.989i)2-s − 3-s + (−0.959 − 0.281i)4-s + (0.415 + 0.909i)5-s + (−0.142 + 0.989i)6-s + (−0.841 + 0.540i)7-s + (−0.415 + 0.909i)8-s + 9-s + (0.959 − 0.281i)10-s + (0.959 + 0.281i)12-s + (−0.959 − 0.281i)13-s + (0.415 + 0.909i)14-s + (−0.415 − 0.909i)15-s + (0.841 + 0.540i)16-s + (−0.654 + 0.755i)17-s + (0.142 − 0.989i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.898 - 0.438i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.898 - 0.438i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6538977958 - 0.1511629082i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6538977958 - 0.1511629082i\) |
\(L(1)\) |
\(\approx\) |
\(0.6168782890 - 0.1680409474i\) |
\(L(1)\) |
\(\approx\) |
\(0.6168782890 - 0.1680409474i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (0.142 - 0.989i)T \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 + (0.415 + 0.909i)T \) |
| 7 | \( 1 + (-0.841 + 0.540i)T \) |
| 13 | \( 1 + (-0.959 - 0.281i)T \) |
| 17 | \( 1 + (-0.654 + 0.755i)T \) |
| 19 | \( 1 + (0.654 + 0.755i)T \) |
| 23 | \( 1 + (-0.841 - 0.540i)T \) |
| 29 | \( 1 + (-0.654 - 0.755i)T \) |
| 37 | \( 1 + (0.959 - 0.281i)T \) |
| 41 | \( 1 + (0.142 - 0.989i)T \) |
| 43 | \( 1 + (0.415 - 0.909i)T \) |
| 47 | \( 1 + (-0.142 - 0.989i)T \) |
| 53 | \( 1 + (-0.841 + 0.540i)T \) |
| 59 | \( 1 + (-0.142 - 0.989i)T \) |
| 61 | \( 1 + (-0.142 - 0.989i)T \) |
| 67 | \( 1 + (-0.142 + 0.989i)T \) |
| 71 | \( 1 + (-0.654 - 0.755i)T \) |
| 73 | \( 1 + (0.841 + 0.540i)T \) |
| 79 | \( 1 + (0.415 + 0.909i)T \) |
| 83 | \( 1 + (0.841 - 0.540i)T \) |
| 89 | \( 1 + (0.654 - 0.755i)T \) |
| 97 | \( 1 + (0.415 - 0.909i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.132255264041422114217471166127, −17.85933547580658870236867222979, −17.135776162639766543272767477333, −16.4460997968917722468664395664, −16.237875318255202569529848751872, −15.5661296856991891279565432374, −14.608744802176604517894856344526, −13.62493556426015987909865818047, −13.28160279781327262419285203433, −12.5993571241683725951126290549, −11.98007171266531100007428879371, −11.110778661107912043774864760783, −9.96111023501014718835544430590, −9.52600467867330078106986987454, −9.10367266679580537495850265008, −7.73592723522566898470212599469, −7.34486966377926549598719336262, −6.43650442317911697826517745341, −6.01650209820658441444183632531, −5.02013940672842991382991719103, −4.71584473029788667138035075913, −3.93632745209012763398276837859, −2.76787728875026885796422317291, −1.35153164128619985365452677455, −0.45783437068379433009945364257,
0.47674710472702645758737217564, 1.96509890991944962939716255001, 2.284978251240252157469307820990, 3.40193020992730913533058241038, 4.00298650969202943597073815148, 5.01835328364840646425769074804, 5.866460185090630823551109659709, 6.12984972067702144343614570126, 7.13315661929469668424172929835, 8.00843191439657392859036048972, 9.229504121472526810655406640750, 9.81328350908202518933599385767, 10.27738127344735573998498605126, 10.90274454153864824051341369581, 11.67807829204598792641978894986, 12.29915128494192793175595977130, 12.79696384477045323863792259811, 13.543891651034151617514561912667, 14.351898064895204951657328381191, 15.11128099494991629452636351280, 15.7372988073870727129717765831, 16.77645252297472715453875004885, 17.39415241263006621229842888919, 17.98916314898019475544897548480, 18.72019275782003014158875867465