sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3751, base_ring=CyclotomicField(330))
M = H._module
chi = DirichletCharacter(H, M([177,209]))
pari:[g,chi] = znchar(Mod(105,3751))
Modulus: | \(3751\) | |
Conductor: | \(3751\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(330\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3751}(13,\cdot)\)
\(\chi_{3751}(83,\cdot)\)
\(\chi_{3751}(84,\cdot)\)
\(\chi_{3751}(105,\cdot)\)
\(\chi_{3751}(172,\cdot)\)
\(\chi_{3751}(189,\cdot)\)
\(\chi_{3751}(228,\cdot)\)
\(\chi_{3751}(272,\cdot)\)
\(\chi_{3751}(424,\cdot)\)
\(\chi_{3751}(425,\cdot)\)
\(\chi_{3751}(446,\cdot)\)
\(\chi_{3751}(513,\cdot)\)
\(\chi_{3751}(530,\cdot)\)
\(\chi_{3751}(569,\cdot)\)
\(\chi_{3751}(613,\cdot)\)
\(\chi_{3751}(695,\cdot)\)
\(\chi_{3751}(765,\cdot)\)
\(\chi_{3751}(787,\cdot)\)
\(\chi_{3751}(854,\cdot)\)
\(\chi_{3751}(871,\cdot)\)
\(\chi_{3751}(910,\cdot)\)
\(\chi_{3751}(954,\cdot)\)
\(\chi_{3751}(1036,\cdot)\)
\(\chi_{3751}(1106,\cdot)\)
\(\chi_{3751}(1107,\cdot)\)
\(\chi_{3751}(1128,\cdot)\)
\(\chi_{3751}(1195,\cdot)\)
\(\chi_{3751}(1212,\cdot)\)
\(\chi_{3751}(1251,\cdot)\)
\(\chi_{3751}(1295,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2543,2421)\) → \((e\left(\frac{59}{110}\right),e\left(\frac{19}{30}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
\( \chi_{ 3751 }(105, a) \) |
\(1\) | \(1\) | \(e\left(\frac{81}{110}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{26}{55}\right)\) | \(e\left(\frac{59}{165}\right)\) | \(e\left(\frac{94}{165}\right)\) | \(e\left(\frac{161}{330}\right)\) | \(e\left(\frac{23}{110}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{31}{330}\right)\) | \(e\left(\frac{101}{330}\right)\) |
sage:chi.jacobi_sum(n)