L(s) = 1 | + (−0.0855 − 0.996i)2-s + (0.5 − 0.866i)3-s + (−0.985 + 0.170i)4-s + (−0.625 + 0.780i)5-s + (−0.905 − 0.424i)6-s + (−0.997 + 0.0760i)7-s + (0.254 + 0.967i)8-s + (−0.5 − 0.866i)9-s + (0.830 + 0.556i)10-s + (−0.345 + 0.938i)12-s + (0.640 + 0.768i)13-s + (0.161 + 0.986i)14-s + (0.362 + 0.931i)15-s + (0.941 − 0.336i)16-s + (−0.217 − 0.976i)17-s + (−0.820 + 0.572i)18-s + ⋯ |
L(s) = 1 | + (−0.0855 − 0.996i)2-s + (0.5 − 0.866i)3-s + (−0.985 + 0.170i)4-s + (−0.625 + 0.780i)5-s + (−0.905 − 0.424i)6-s + (−0.997 + 0.0760i)7-s + (0.254 + 0.967i)8-s + (−0.5 − 0.866i)9-s + (0.830 + 0.556i)10-s + (−0.345 + 0.938i)12-s + (0.640 + 0.768i)13-s + (0.161 + 0.986i)14-s + (0.362 + 0.931i)15-s + (0.941 − 0.336i)16-s + (−0.217 − 0.976i)17-s + (−0.820 + 0.572i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.857 - 0.514i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.857 - 0.514i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8220436562 - 0.2277700197i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8220436562 - 0.2277700197i\) |
\(L(1)\) |
\(\approx\) |
\(0.6724319635 - 0.4263941310i\) |
\(L(1)\) |
\(\approx\) |
\(0.6724319635 - 0.4263941310i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 31 | \( 1 \) |
good | 2 | \( 1 + (-0.0855 - 0.996i)T \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 5 | \( 1 + (-0.625 + 0.780i)T \) |
| 7 | \( 1 + (-0.997 + 0.0760i)T \) |
| 13 | \( 1 + (0.640 + 0.768i)T \) |
| 17 | \( 1 + (-0.217 - 0.976i)T \) |
| 19 | \( 1 + (0.948 + 0.318i)T \) |
| 23 | \( 1 + (-0.610 - 0.791i)T \) |
| 29 | \( 1 + (0.415 - 0.909i)T \) |
| 37 | \( 1 + (-0.640 + 0.768i)T \) |
| 41 | \( 1 + (0.290 + 0.956i)T \) |
| 43 | \( 1 + (-0.935 + 0.353i)T \) |
| 47 | \( 1 + (-0.654 + 0.755i)T \) |
| 53 | \( 1 + (-0.723 - 0.690i)T \) |
| 59 | \( 1 + (-0.290 + 0.956i)T \) |
| 61 | \( 1 + (0.974 - 0.226i)T \) |
| 67 | \( 1 + (-0.327 + 0.945i)T \) |
| 71 | \( 1 + (-0.398 - 0.917i)T \) |
| 73 | \( 1 + (-0.851 + 0.524i)T \) |
| 79 | \( 1 + (-0.888 + 0.458i)T \) |
| 83 | \( 1 + (0.879 - 0.475i)T \) |
| 89 | \( 1 + (0.870 + 0.491i)T \) |
| 97 | \( 1 + (-0.254 - 0.967i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.74341685629933896545705134764, −17.69104717981125949904872840159, −17.13356252413702885037781878766, −16.23457595780006267935684425394, −15.94177029514008817503754729123, −15.53769061684850454871753700622, −14.82720341636347899322844839057, −13.92140391223305957935182331395, −13.30604570962630790559693074450, −12.76868159172954281919393253882, −11.876735523358554842712122221543, −10.70601886673799142622128924463, −10.16285688148269706612353076285, −9.30135818513095243138324618413, −8.8876660246264058789457765417, −8.17201629836347601120531897810, −7.59288616933092729151786852358, −6.684550820293882239917474634298, −5.64584253957148093107594115015, −5.2788540665943030605112063544, −4.30195858799394240368463528686, −3.58002568739633982900192323497, −3.26225909152292347519356417208, −1.59342179085183772354722507842, −0.347274865524725054298557213470,
0.7218657970675083479765078956, 1.7367912397981447129489374077, 2.712918097105216192448339105082, 3.08254601553688335748977417800, 3.80097972148126583351733534193, 4.63151400031322553922794776255, 5.98746004671288776531165444704, 6.5811662474008432457543971038, 7.3413961581319560405127070406, 8.13211448365600394137249674801, 8.75478256019477969056617024454, 9.66091324948656604018934968726, 10.05101971458825675958695292230, 11.19408719653935286640353560296, 11.753858822828172859946297154602, 12.13253579907742715635251735957, 13.08249117776709603152363431613, 13.62662874723667478104311347494, 14.17159174350746758871952769816, 14.85312275196730511170578218152, 15.913348921052478899439785141470, 16.42152518817475495400599099837, 17.63250033868922176209239422220, 18.23343887785427581191758622318, 18.73575121098922370139405147791