Properties

Label 373527.ru
Modulus $373527$
Conductor $124509$
Order $16170$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(373527, base_ring=CyclotomicField(16170)) M = H._module chi = DirichletCharacter(H, M([8085,550,15582])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(53,373527)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(373527\)
Conductor: \(124509\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16170\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 124509.hf
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{8085})$
Fixed field: Number field defined by a degree 16170 polynomial (not computed)

First 14 of 3360 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(8\) \(10\) \(13\) \(16\) \(17\) \(19\) \(20\)
\(\chi_{373527}(53,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1007}{16170}\right)\) \(e\left(\frac{1007}{8085}\right)\) \(e\left(\frac{12863}{16170}\right)\) \(e\left(\frac{1007}{5390}\right)\) \(e\left(\frac{1387}{1617}\right)\) \(e\left(\frac{57}{2695}\right)\) \(e\left(\frac{2014}{8085}\right)\) \(e\left(\frac{9193}{16170}\right)\) \(e\left(\frac{52}{165}\right)\) \(e\left(\frac{4959}{5390}\right)\)
\(\chi_{373527}(170,\cdot)\) \(-1\) \(1\) \(e\left(\frac{4423}{16170}\right)\) \(e\left(\frac{4423}{8085}\right)\) \(e\left(\frac{6157}{16170}\right)\) \(e\left(\frac{4423}{5390}\right)\) \(e\left(\frac{1058}{1617}\right)\) \(e\left(\frac{708}{2695}\right)\) \(e\left(\frac{761}{8085}\right)\) \(e\left(\frac{13337}{16170}\right)\) \(e\left(\frac{38}{165}\right)\) \(e\left(\frac{5001}{5390}\right)\)
\(\chi_{373527}(179,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7211}{16170}\right)\) \(e\left(\frac{7211}{8085}\right)\) \(e\left(\frac{6989}{16170}\right)\) \(e\left(\frac{1821}{5390}\right)\) \(e\left(\frac{1420}{1617}\right)\) \(e\left(\frac{1476}{2695}\right)\) \(e\left(\frac{6337}{8085}\right)\) \(e\left(\frac{9259}{16170}\right)\) \(e\left(\frac{151}{165}\right)\) \(e\left(\frac{1747}{5390}\right)\)
\(\chi_{373527}(368,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7193}{16170}\right)\) \(e\left(\frac{7193}{8085}\right)\) \(e\left(\frac{47}{16170}\right)\) \(e\left(\frac{1803}{5390}\right)\) \(e\left(\frac{724}{1617}\right)\) \(e\left(\frac{458}{2695}\right)\) \(e\left(\frac{6301}{8085}\right)\) \(e\left(\frac{6397}{16170}\right)\) \(e\left(\frac{28}{165}\right)\) \(e\left(\frac{4811}{5390}\right)\)
\(\chi_{373527}(548,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7207}{16170}\right)\) \(e\left(\frac{7207}{8085}\right)\) \(e\left(\frac{7243}{16170}\right)\) \(e\left(\frac{1817}{5390}\right)\) \(e\left(\frac{1445}{1617}\right)\) \(e\left(\frac{52}{2695}\right)\) \(e\left(\frac{6329}{8085}\right)\) \(e\left(\frac{3233}{16170}\right)\) \(e\left(\frac{32}{165}\right)\) \(e\left(\frac{1829}{5390}\right)\)
\(\chi_{373527}(620,\cdot)\) \(-1\) \(1\) \(e\left(\frac{14519}{16170}\right)\) \(e\left(\frac{6434}{8085}\right)\) \(e\left(\frac{11861}{16170}\right)\) \(e\left(\frac{3739}{5390}\right)\) \(e\left(\frac{1021}{1617}\right)\) \(e\left(\frac{2449}{2695}\right)\) \(e\left(\frac{4783}{8085}\right)\) \(e\left(\frac{6991}{16170}\right)\) \(e\left(\frac{94}{165}\right)\) \(e\left(\frac{2853}{5390}\right)\)
\(\chi_{373527}(674,\cdot)\) \(-1\) \(1\) \(e\left(\frac{10081}{16170}\right)\) \(e\left(\frac{1996}{8085}\right)\) \(e\left(\frac{10699}{16170}\right)\) \(e\left(\frac{4691}{5390}\right)\) \(e\left(\frac{461}{1617}\right)\) \(e\left(\frac{1791}{2695}\right)\) \(e\left(\frac{3992}{8085}\right)\) \(e\left(\frac{7439}{16170}\right)\) \(e\left(\frac{146}{165}\right)\) \(e\left(\frac{4897}{5390}\right)\)
\(\chi_{373527}(746,\cdot)\) \(-1\) \(1\) \(e\left(\frac{227}{16170}\right)\) \(e\left(\frac{227}{8085}\right)\) \(e\left(\frac{13883}{16170}\right)\) \(e\left(\frac{227}{5390}\right)\) \(e\left(\frac{1411}{1617}\right)\) \(e\left(\frac{2657}{2695}\right)\) \(e\left(\frac{454}{8085}\right)\) \(e\left(\frac{14533}{16170}\right)\) \(e\left(\frac{112}{165}\right)\) \(e\left(\frac{4779}{5390}\right)\)
\(\chi_{373527}(872,\cdot)\) \(-1\) \(1\) \(e\left(\frac{4541}{16170}\right)\) \(e\left(\frac{4541}{8085}\right)\) \(e\left(\frac{6749}{16170}\right)\) \(e\left(\frac{4541}{5390}\right)\) \(e\left(\frac{1129}{1617}\right)\) \(e\left(\frac{2291}{2695}\right)\) \(e\left(\frac{997}{8085}\right)\) \(e\left(\frac{5149}{16170}\right)\) \(e\left(\frac{1}{165}\right)\) \(e\left(\frac{5277}{5390}\right)\)
\(\chi_{373527}(1061,\cdot)\) \(-1\) \(1\) \(e\left(\frac{2423}{16170}\right)\) \(e\left(\frac{2423}{8085}\right)\) \(e\left(\frac{3797}{16170}\right)\) \(e\left(\frac{2423}{5390}\right)\) \(e\left(\frac{622}{1617}\right)\) \(e\left(\frac{188}{2695}\right)\) \(e\left(\frac{4846}{8085}\right)\) \(e\left(\frac{7957}{16170}\right)\) \(e\left(\frac{103}{165}\right)\) \(e\left(\frac{2881}{5390}\right)\)
\(\chi_{373527}(1115,\cdot)\) \(-1\) \(1\) \(e\left(\frac{6469}{16170}\right)\) \(e\left(\frac{6469}{8085}\right)\) \(e\left(\frac{13681}{16170}\right)\) \(e\left(\frac{1079}{5390}\right)\) \(e\left(\frac{398}{1617}\right)\) \(e\left(\frac{1434}{2695}\right)\) \(e\left(\frac{4853}{8085}\right)\) \(e\left(\frac{15251}{16170}\right)\) \(e\left(\frac{104}{165}\right)\) \(e\left(\frac{3483}{5390}\right)\)
\(\chi_{373527}(1241,\cdot)\) \(-1\) \(1\) \(e\left(\frac{14677}{16170}\right)\) \(e\left(\frac{6592}{8085}\right)\) \(e\left(\frac{9913}{16170}\right)\) \(e\left(\frac{3897}{5390}\right)\) \(e\left(\frac{842}{1617}\right)\) \(e\left(\frac{2102}{2695}\right)\) \(e\left(\frac{5099}{8085}\right)\) \(e\left(\frac{10553}{16170}\right)\) \(e\left(\frac{92}{165}\right)\) \(e\left(\frac{2309}{5390}\right)\)
\(\chi_{373527}(1313,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3029}{16170}\right)\) \(e\left(\frac{3029}{8085}\right)\) \(e\left(\frac{5741}{16170}\right)\) \(e\left(\frac{3029}{5390}\right)\) \(e\left(\frac{877}{1617}\right)\) \(e\left(\frac{324}{2695}\right)\) \(e\left(\frac{6058}{8085}\right)\) \(e\left(\frac{7291}{16170}\right)\) \(e\left(\frac{64}{165}\right)\) \(e\left(\frac{3933}{5390}\right)\)
\(\chi_{373527}(1367,\cdot)\) \(-1\) \(1\) \(e\left(\frac{4111}{16170}\right)\) \(e\left(\frac{4111}{8085}\right)\) \(e\left(\frac{9799}{16170}\right)\) \(e\left(\frac{4111}{5390}\right)\) \(e\left(\frac{1391}{1617}\right)\) \(e\left(\frac{131}{2695}\right)\) \(e\left(\frac{137}{8085}\right)\) \(e\left(\frac{12239}{16170}\right)\) \(e\left(\frac{161}{165}\right)\) \(e\left(\frac{617}{5390}\right)\)