sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(373527, base_ring=CyclotomicField(16170))
M = H._module
chi = DirichletCharacter(H, M([8085,6820,11172]))
pari:[g,chi] = znchar(Mod(746,373527))
\(\chi_{373527}(53,\cdot)\)
\(\chi_{373527}(170,\cdot)\)
\(\chi_{373527}(179,\cdot)\)
\(\chi_{373527}(368,\cdot)\)
\(\chi_{373527}(548,\cdot)\)
\(\chi_{373527}(620,\cdot)\)
\(\chi_{373527}(674,\cdot)\)
\(\chi_{373527}(746,\cdot)\)
\(\chi_{373527}(872,\cdot)\)
\(\chi_{373527}(1061,\cdot)\)
\(\chi_{373527}(1115,\cdot)\)
\(\chi_{373527}(1241,\cdot)\)
\(\chi_{373527}(1313,\cdot)\)
\(\chi_{373527}(1367,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((290522,286408,126568)\) → \((-1,e\left(\frac{62}{147}\right),e\left(\frac{38}{55}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(13\) | \(16\) | \(17\) | \(19\) | \(20\) |
| \( \chi_{ 373527 }(746, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{227}{16170}\right)\) | \(e\left(\frac{227}{8085}\right)\) | \(e\left(\frac{13883}{16170}\right)\) | \(e\left(\frac{227}{5390}\right)\) | \(e\left(\frac{1411}{1617}\right)\) | \(e\left(\frac{2657}{2695}\right)\) | \(e\left(\frac{454}{8085}\right)\) | \(e\left(\frac{14533}{16170}\right)\) | \(e\left(\frac{112}{165}\right)\) | \(e\left(\frac{4779}{5390}\right)\) |
sage:chi.jacobi_sum(n)