Properties

Label 373527.rp
Modulus $373527$
Conductor $124509$
Order $16170$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(373527, base_ring=CyclotomicField(16170)) M = H._module chi = DirichletCharacter(H, M([8085,1375,7203])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(17,373527)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(373527\)
Conductor: \(124509\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16170\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 124509.hd
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{8085})$
Fixed field: Number field defined by a degree 16170 polynomial (not computed)

First 13 of 3360 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(8\) \(10\) \(13\) \(16\) \(17\) \(19\) \(20\)
\(\chi_{373527}(17,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3574}{8085}\right)\) \(e\left(\frac{7148}{8085}\right)\) \(e\left(\frac{7516}{8085}\right)\) \(e\left(\frac{879}{2695}\right)\) \(e\left(\frac{601}{1617}\right)\) \(e\left(\frac{608}{2695}\right)\) \(e\left(\frac{6211}{8085}\right)\) \(e\left(\frac{7327}{16170}\right)\) \(e\left(\frac{133}{165}\right)\) \(e\left(\frac{2193}{2695}\right)\)
\(\chi_{373527}(206,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3898}{8085}\right)\) \(e\left(\frac{7796}{8085}\right)\) \(e\left(\frac{3112}{8085}\right)\) \(e\left(\frac{1203}{2695}\right)\) \(e\left(\frac{1402}{1617}\right)\) \(e\left(\frac{2221}{2695}\right)\) \(e\left(\frac{7507}{8085}\right)\) \(e\left(\frac{13339}{16170}\right)\) \(e\left(\frac{106}{165}\right)\) \(e\left(\frac{941}{2695}\right)\)
\(\chi_{373527}(332,\cdot)\) \(-1\) \(1\) \(e\left(\frac{271}{8085}\right)\) \(e\left(\frac{542}{8085}\right)\) \(e\left(\frac{3004}{8085}\right)\) \(e\left(\frac{271}{2695}\right)\) \(e\left(\frac{655}{1617}\right)\) \(e\left(\frac{1607}{2695}\right)\) \(e\left(\frac{1084}{8085}\right)\) \(e\left(\frac{8023}{16170}\right)\) \(e\left(\frac{37}{165}\right)\) \(e\left(\frac{1182}{2695}\right)\)
\(\chi_{373527}(404,\cdot)\) \(-1\) \(1\) \(e\left(\frac{2048}{8085}\right)\) \(e\left(\frac{4096}{8085}\right)\) \(e\left(\frac{7397}{8085}\right)\) \(e\left(\frac{2048}{2695}\right)\) \(e\left(\frac{272}{1617}\right)\) \(e\left(\frac{181}{2695}\right)\) \(e\left(\frac{107}{8085}\right)\) \(e\left(\frac{1769}{16170}\right)\) \(e\left(\frac{86}{165}\right)\) \(e\left(\frac{1136}{2695}\right)\)
\(\chi_{373527}(458,\cdot)\) \(-1\) \(1\) \(e\left(\frac{2272}{8085}\right)\) \(e\left(\frac{4544}{8085}\right)\) \(e\left(\frac{1258}{8085}\right)\) \(e\left(\frac{2272}{2695}\right)\) \(e\left(\frac{706}{1617}\right)\) \(e\left(\frac{664}{2695}\right)\) \(e\left(\frac{1003}{8085}\right)\) \(e\left(\frac{13711}{16170}\right)\) \(e\left(\frac{49}{165}\right)\) \(e\left(\frac{1934}{2695}\right)\)
\(\chi_{373527}(530,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7226}{8085}\right)\) \(e\left(\frac{6367}{8085}\right)\) \(e\left(\frac{1994}{8085}\right)\) \(e\left(\frac{1836}{2695}\right)\) \(e\left(\frac{227}{1617}\right)\) \(e\left(\frac{157}{2695}\right)\) \(e\left(\frac{4649}{8085}\right)\) \(e\left(\frac{15203}{16170}\right)\) \(e\left(\frac{122}{165}\right)\) \(e\left(\frac{92}{2695}\right)\)
\(\chi_{373527}(710,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5959}{8085}\right)\) \(e\left(\frac{3833}{8085}\right)\) \(e\left(\frac{5641}{8085}\right)\) \(e\left(\frac{569}{2695}\right)\) \(e\left(\frac{703}{1617}\right)\) \(e\left(\frac{878}{2695}\right)\) \(e\left(\frac{7666}{8085}\right)\) \(e\left(\frac{5767}{16170}\right)\) \(e\left(\frac{58}{165}\right)\) \(e\left(\frac{463}{2695}\right)\)
\(\chi_{373527}(899,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5233}{8085}\right)\) \(e\left(\frac{2381}{8085}\right)\) \(e\left(\frac{3232}{8085}\right)\) \(e\left(\frac{2538}{2695}\right)\) \(e\left(\frac{76}{1617}\right)\) \(e\left(\frac{1406}{2695}\right)\) \(e\left(\frac{4762}{8085}\right)\) \(e\left(\frac{1279}{16170}\right)\) \(e\left(\frac{91}{165}\right)\) \(e\left(\frac{1871}{2695}\right)\)
\(\chi_{373527}(908,\cdot)\) \(-1\) \(1\) \(e\left(\frac{8039}{8085}\right)\) \(e\left(\frac{7993}{8085}\right)\) \(e\left(\frac{2921}{8085}\right)\) \(e\left(\frac{2649}{2695}\right)\) \(e\left(\frac{575}{1617}\right)\) \(e\left(\frac{2283}{2695}\right)\) \(e\left(\frac{7901}{8085}\right)\) \(e\left(\frac{15017}{16170}\right)\) \(e\left(\frac{68}{165}\right)\) \(e\left(\frac{943}{2695}\right)\)
\(\chi_{373527}(1025,\cdot)\) \(-1\) \(1\) \(e\left(\frac{661}{8085}\right)\) \(e\left(\frac{1322}{8085}\right)\) \(e\left(\frac{2494}{8085}\right)\) \(e\left(\frac{661}{2695}\right)\) \(e\left(\frac{631}{1617}\right)\) \(e\left(\frac{1702}{2695}\right)\) \(e\left(\frac{2644}{8085}\right)\) \(e\left(\frac{2683}{16170}\right)\) \(e\left(\frac{142}{165}\right)\) \(e\left(\frac{1272}{2695}\right)\)
\(\chi_{373527}(1151,\cdot)\) \(-1\) \(1\) \(e\left(\frac{6862}{8085}\right)\) \(e\left(\frac{5639}{8085}\right)\) \(e\left(\frac{853}{8085}\right)\) \(e\left(\frac{1472}{2695}\right)\) \(e\left(\frac{1543}{1617}\right)\) \(e\left(\frac{2404}{2695}\right)\) \(e\left(\frac{3193}{8085}\right)\) \(e\left(\frac{1861}{16170}\right)\) \(e\left(\frac{79}{165}\right)\) \(e\left(\frac{2164}{2695}\right)\)
\(\chi_{373527}(1223,\cdot)\) \(-1\) \(1\) \(e\left(\frac{6956}{8085}\right)\) \(e\left(\frac{5827}{8085}\right)\) \(e\left(\frac{2969}{8085}\right)\) \(e\left(\frac{1566}{2695}\right)\) \(e\left(\frac{368}{1617}\right)\) \(e\left(\frac{1957}{2695}\right)\) \(e\left(\frac{3569}{8085}\right)\) \(e\left(\frac{10193}{16170}\right)\) \(e\left(\frac{62}{165}\right)\) \(e\left(\frac{237}{2695}\right)\)
\(\chi_{373527}(1349,\cdot)\) \(-1\) \(1\) \(e\left(\frac{2642}{8085}\right)\) \(e\left(\frac{5284}{8085}\right)\) \(e\left(\frac{2018}{8085}\right)\) \(e\left(\frac{2642}{2695}\right)\) \(e\left(\frac{932}{1617}\right)\) \(e\left(\frac{2689}{2695}\right)\) \(e\left(\frac{2483}{8085}\right)\) \(e\left(\frac{12791}{16170}\right)\) \(e\left(\frac{119}{165}\right)\) \(e\left(\frac{2434}{2695}\right)\)