sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(373527, base_ring=CyclotomicField(16170))
M = H._module
chi = DirichletCharacter(H, M([8085,935,9849]))
pari:[g,chi] = znchar(Mod(1349,373527))
\(\chi_{373527}(17,\cdot)\)
\(\chi_{373527}(206,\cdot)\)
\(\chi_{373527}(332,\cdot)\)
\(\chi_{373527}(404,\cdot)\)
\(\chi_{373527}(458,\cdot)\)
\(\chi_{373527}(530,\cdot)\)
\(\chi_{373527}(710,\cdot)\)
\(\chi_{373527}(899,\cdot)\)
\(\chi_{373527}(908,\cdot)\)
\(\chi_{373527}(1025,\cdot)\)
\(\chi_{373527}(1151,\cdot)\)
\(\chi_{373527}(1223,\cdot)\)
\(\chi_{373527}(1349,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((290522,286408,126568)\) → \((-1,e\left(\frac{17}{294}\right),e\left(\frac{67}{110}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(13\) | \(16\) | \(17\) | \(19\) | \(20\) |
| \( \chi_{ 373527 }(1349, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{2642}{8085}\right)\) | \(e\left(\frac{5284}{8085}\right)\) | \(e\left(\frac{2018}{8085}\right)\) | \(e\left(\frac{2642}{2695}\right)\) | \(e\left(\frac{932}{1617}\right)\) | \(e\left(\frac{2689}{2695}\right)\) | \(e\left(\frac{2483}{8085}\right)\) | \(e\left(\frac{12791}{16170}\right)\) | \(e\left(\frac{119}{165}\right)\) | \(e\left(\frac{2434}{2695}\right)\) |
sage:chi.jacobi_sum(n)