sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3724, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([63,102,112]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(1411,3724))
         
     
    
  
   | Modulus: |  \(3724\) |   |  
   | Conductor: |  \(3724\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(126\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  odd |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{3724}(23,\cdot)\)
  \(\chi_{3724}(207,\cdot)\)
  \(\chi_{3724}(347,\cdot)\)
  \(\chi_{3724}(443,\cdot)\)
  \(\chi_{3724}(555,\cdot)\)
  \(\chi_{3724}(739,\cdot)\)
  \(\chi_{3724}(795,\cdot)\)
  \(\chi_{3724}(807,\cdot)\)
  \(\chi_{3724}(879,\cdot)\)
  \(\chi_{3724}(975,\cdot)\)
  \(\chi_{3724}(1087,\cdot)\)
  \(\chi_{3724}(1271,\cdot)\)
  \(\chi_{3724}(1327,\cdot)\)
  \(\chi_{3724}(1339,\cdot)\)
  \(\chi_{3724}(1411,\cdot)\)
  \(\chi_{3724}(1507,\cdot)\)
  \(\chi_{3724}(1619,\cdot)\)
  \(\chi_{3724}(1803,\cdot)\)
  \(\chi_{3724}(1859,\cdot)\)
  \(\chi_{3724}(1871,\cdot)\)
  \(\chi_{3724}(1943,\cdot)\)
  \(\chi_{3724}(2151,\cdot)\)
  \(\chi_{3724}(2335,\cdot)\)
  \(\chi_{3724}(2391,\cdot)\)
  \(\chi_{3724}(2403,\cdot)\)
  \(\chi_{3724}(2475,\cdot)\)
  \(\chi_{3724}(2571,\cdot)\)
  \(\chi_{3724}(2683,\cdot)\)
  \(\chi_{3724}(2867,\cdot)\)
  \(\chi_{3724}(2923,\cdot)\)
 ... 
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((1863,3041,3137)\) → \((-1,e\left(\frac{17}{21}\right),e\left(\frac{8}{9}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(23\) | \(25\) | \(27\) |       
    
    
      | \( \chi_{ 3724 }(1411, a) \) | 
      \(-1\) | \(1\) | \(e\left(\frac{109}{126}\right)\) | \(e\left(\frac{44}{63}\right)\) | \(e\left(\frac{46}{63}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{10}{63}\right)\) | \(e\left(\frac{71}{126}\right)\) | \(e\left(\frac{8}{63}\right)\) | \(e\left(\frac{5}{126}\right)\) | \(e\left(\frac{25}{63}\right)\) | \(e\left(\frac{25}{42}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)