sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3724, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([63,114,98]))
pari:[g,chi] = znchar(Mod(2571,3724))
| Modulus: | \(3724\) | |
| Conductor: | \(3724\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(126\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3724}(23,\cdot)\)
\(\chi_{3724}(207,\cdot)\)
\(\chi_{3724}(347,\cdot)\)
\(\chi_{3724}(443,\cdot)\)
\(\chi_{3724}(555,\cdot)\)
\(\chi_{3724}(739,\cdot)\)
\(\chi_{3724}(795,\cdot)\)
\(\chi_{3724}(807,\cdot)\)
\(\chi_{3724}(879,\cdot)\)
\(\chi_{3724}(975,\cdot)\)
\(\chi_{3724}(1087,\cdot)\)
\(\chi_{3724}(1271,\cdot)\)
\(\chi_{3724}(1327,\cdot)\)
\(\chi_{3724}(1339,\cdot)\)
\(\chi_{3724}(1411,\cdot)\)
\(\chi_{3724}(1507,\cdot)\)
\(\chi_{3724}(1619,\cdot)\)
\(\chi_{3724}(1803,\cdot)\)
\(\chi_{3724}(1859,\cdot)\)
\(\chi_{3724}(1871,\cdot)\)
\(\chi_{3724}(1943,\cdot)\)
\(\chi_{3724}(2151,\cdot)\)
\(\chi_{3724}(2335,\cdot)\)
\(\chi_{3724}(2391,\cdot)\)
\(\chi_{3724}(2403,\cdot)\)
\(\chi_{3724}(2475,\cdot)\)
\(\chi_{3724}(2571,\cdot)\)
\(\chi_{3724}(2683,\cdot)\)
\(\chi_{3724}(2867,\cdot)\)
\(\chi_{3724}(2923,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1863,3041,3137)\) → \((-1,e\left(\frac{19}{21}\right),e\left(\frac{7}{9}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(23\) | \(25\) | \(27\) |
| \( \chi_{ 3724 }(2571, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{65}{126}\right)\) | \(e\left(\frac{43}{63}\right)\) | \(e\left(\frac{2}{63}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{47}{63}\right)\) | \(e\left(\frac{25}{126}\right)\) | \(e\left(\frac{25}{63}\right)\) | \(e\left(\frac{55}{126}\right)\) | \(e\left(\frac{23}{63}\right)\) | \(e\left(\frac{23}{42}\right)\) |
sage:chi.jacobi_sum(n)