Properties

Label 3724.2571
Modulus $3724$
Conductor $3724$
Order $126$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3724, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([63,114,98]))
 
Copy content pari:[g,chi] = znchar(Mod(2571,3724))
 

Basic properties

Modulus: \(3724\)
Conductor: \(3724\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(126\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3724.eh

\(\chi_{3724}(23,\cdot)\) \(\chi_{3724}(207,\cdot)\) \(\chi_{3724}(347,\cdot)\) \(\chi_{3724}(443,\cdot)\) \(\chi_{3724}(555,\cdot)\) \(\chi_{3724}(739,\cdot)\) \(\chi_{3724}(795,\cdot)\) \(\chi_{3724}(807,\cdot)\) \(\chi_{3724}(879,\cdot)\) \(\chi_{3724}(975,\cdot)\) \(\chi_{3724}(1087,\cdot)\) \(\chi_{3724}(1271,\cdot)\) \(\chi_{3724}(1327,\cdot)\) \(\chi_{3724}(1339,\cdot)\) \(\chi_{3724}(1411,\cdot)\) \(\chi_{3724}(1507,\cdot)\) \(\chi_{3724}(1619,\cdot)\) \(\chi_{3724}(1803,\cdot)\) \(\chi_{3724}(1859,\cdot)\) \(\chi_{3724}(1871,\cdot)\) \(\chi_{3724}(1943,\cdot)\) \(\chi_{3724}(2151,\cdot)\) \(\chi_{3724}(2335,\cdot)\) \(\chi_{3724}(2391,\cdot)\) \(\chi_{3724}(2403,\cdot)\) \(\chi_{3724}(2475,\cdot)\) \(\chi_{3724}(2571,\cdot)\) \(\chi_{3724}(2683,\cdot)\) \(\chi_{3724}(2867,\cdot)\) \(\chi_{3724}(2923,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

\((1863,3041,3137)\) → \((-1,e\left(\frac{19}{21}\right),e\left(\frac{7}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(23\)\(25\)\(27\)
\( \chi_{ 3724 }(2571, a) \) \(-1\)\(1\)\(e\left(\frac{65}{126}\right)\)\(e\left(\frac{43}{63}\right)\)\(e\left(\frac{2}{63}\right)\)\(e\left(\frac{1}{42}\right)\)\(e\left(\frac{47}{63}\right)\)\(e\left(\frac{25}{126}\right)\)\(e\left(\frac{25}{63}\right)\)\(e\left(\frac{55}{126}\right)\)\(e\left(\frac{23}{63}\right)\)\(e\left(\frac{23}{42}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3724 }(2571,a) \;\) at \(\;a = \) e.g. 2