![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3724, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([0,37,14]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3724, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([0,37,14]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(1641,3724))
        pari:[g,chi] = znchar(Mod(1641,3724))
         
     
    
  \(\chi_{3724}(45,\cdot)\)
  \(\chi_{3724}(201,\cdot)\)
  \(\chi_{3724}(577,\cdot)\)
  \(\chi_{3724}(733,\cdot)\)
  \(\chi_{3724}(1265,\cdot)\)
  \(\chi_{3724}(1641,\cdot)\)
  \(\chi_{3724}(1797,\cdot)\)
  \(\chi_{3724}(2173,\cdot)\)
  \(\chi_{3724}(2329,\cdot)\)
  \(\chi_{3724}(2705,\cdot)\)
  \(\chi_{3724}(3237,\cdot)\)
  \(\chi_{3724}(3393,\cdot)\)
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((1863,3041,3137)\) → \((1,e\left(\frac{37}{42}\right),e\left(\frac{1}{3}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(23\) | \(25\) | \(27\) | 
    
    
      | \( \chi_{ 3724 }(1641, a) \) | \(-1\) | \(1\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{9}{14}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)