sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3724, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([21,10,21]))
pari:[g,chi] = znchar(Mod(151,3724))
Modulus: | \(3724\) | |
Conductor: | \(3724\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(42\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3724}(151,\cdot)\)
\(\chi_{3724}(303,\cdot)\)
\(\chi_{3724}(683,\cdot)\)
\(\chi_{3724}(835,\cdot)\)
\(\chi_{3724}(1215,\cdot)\)
\(\chi_{3724}(1367,\cdot)\)
\(\chi_{3724}(1747,\cdot)\)
\(\chi_{3724}(1899,\cdot)\)
\(\chi_{3724}(2279,\cdot)\)
\(\chi_{3724}(2963,\cdot)\)
\(\chi_{3724}(3343,\cdot)\)
\(\chi_{3724}(3495,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1863,3041,3137)\) → \((-1,e\left(\frac{5}{21}\right),-1)\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(23\) | \(25\) | \(27\) |
\( \chi_{ 3724 }(151, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) |
sage:chi.jacobi_sum(n)