L(s) = 1 | + (0.0747 + 0.997i)3-s + (0.826 − 0.563i)5-s + (−0.988 + 0.149i)9-s + (0.988 + 0.149i)11-s + (−0.623 + 0.781i)13-s + (0.623 + 0.781i)15-s + (0.955 − 0.294i)17-s + (−0.955 − 0.294i)23-s + (0.365 − 0.930i)25-s + (−0.222 − 0.974i)27-s + (0.222 − 0.974i)29-s + (−0.5 − 0.866i)31-s + (−0.0747 + 0.997i)33-s + (0.733 + 0.680i)37-s + (−0.826 − 0.563i)39-s + ⋯ |
L(s) = 1 | + (0.0747 + 0.997i)3-s + (0.826 − 0.563i)5-s + (−0.988 + 0.149i)9-s + (0.988 + 0.149i)11-s + (−0.623 + 0.781i)13-s + (0.623 + 0.781i)15-s + (0.955 − 0.294i)17-s + (−0.955 − 0.294i)23-s + (0.365 − 0.930i)25-s + (−0.222 − 0.974i)27-s + (0.222 − 0.974i)29-s + (−0.5 − 0.866i)31-s + (−0.0747 + 0.997i)33-s + (0.733 + 0.680i)37-s + (−0.826 − 0.563i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3724 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.996 + 0.0853i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3724 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.996 + 0.0853i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.125264168 + 0.09089501039i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.125264168 + 0.09089501039i\) |
\(L(1)\) |
\(\approx\) |
\(1.281295611 + 0.2058026351i\) |
\(L(1)\) |
\(\approx\) |
\(1.281295611 + 0.2058026351i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| 19 | \( 1 \) |
good | 3 | \( 1 + (0.0747 + 0.997i)T \) |
| 5 | \( 1 + (0.826 - 0.563i)T \) |
| 11 | \( 1 + (0.988 + 0.149i)T \) |
| 13 | \( 1 + (-0.623 + 0.781i)T \) |
| 17 | \( 1 + (0.955 - 0.294i)T \) |
| 23 | \( 1 + (-0.955 - 0.294i)T \) |
| 29 | \( 1 + (0.222 - 0.974i)T \) |
| 31 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 + (0.733 + 0.680i)T \) |
| 41 | \( 1 + (0.900 + 0.433i)T \) |
| 43 | \( 1 + (0.900 - 0.433i)T \) |
| 47 | \( 1 + (-0.365 - 0.930i)T \) |
| 53 | \( 1 + (0.733 - 0.680i)T \) |
| 59 | \( 1 + (0.826 + 0.563i)T \) |
| 61 | \( 1 + (-0.733 - 0.680i)T \) |
| 67 | \( 1 + (-0.5 - 0.866i)T \) |
| 71 | \( 1 + (-0.222 - 0.974i)T \) |
| 73 | \( 1 + (0.365 - 0.930i)T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 + (-0.623 - 0.781i)T \) |
| 89 | \( 1 + (0.988 - 0.149i)T \) |
| 97 | \( 1 - T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.51500490170284445101019771101, −17.85530317291683190978461140864, −17.51148289751741962081208952711, −16.782475709160149139235523395603, −15.99761685304751300239113524759, −14.73153463160598690263786236647, −14.42000921919095633838944972802, −13.99927021901091904035339459647, −12.981130819714368925060732171351, −12.53984244091987651794159558905, −11.839232319660891110217063244131, −10.99212181217754954017674517981, −10.29821646653623912713490873622, −9.48404810992367549663557791299, −8.84272536299269955576278152092, −7.87987067448615102535810754189, −7.29133290312562763310651920904, −6.62265693243463311975930421021, −5.73744142723231502459831433154, −5.54159996784533214312912716019, −4.105847807163545825381603761682, −3.13920984986291505861735335420, −2.57513051706030868125887755710, −1.61169146718380647620188699802, −0.999726535834168758844938542131,
0.675329268509991681267171987601, 1.88055233672183046183593492923, 2.5218704696160385232302688405, 3.64751359469152464126272854814, 4.34674009560750510735667862751, 4.89680916226693190791382137937, 5.87017875983916206874907563148, 6.25150823003294831218583393661, 7.421757188572526140489883239638, 8.302494089589412940189243679407, 9.06669474028869443024394821681, 9.78135936109959204212051016576, 9.83019616665459753886227271083, 10.930469728359678855164334059402, 11.87730663348935433269138242947, 12.13100783906007977178811482078, 13.31545020007539724003268158188, 13.98627365368026405511937644394, 14.523618010312449814801552344207, 15.072165793415183506415974141, 16.16151426004056554886691566548, 16.61786259187216486495972525852, 17.02880159957437394783211953319, 17.74495586641591007956791964182, 18.607849899791141661363105013406