Properties

Label 3672.497
Modulus $3672$
Conductor $459$
Order $36$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3672, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,26,27]))
 
pari: [g,chi] = znchar(Mod(497,3672))
 

Basic properties

Modulus: \(3672\)
Conductor: \(459\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{459}(38,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3672.dr

\(\chi_{3672}(353,\cdot)\) \(\chi_{3672}(497,\cdot)\) \(\chi_{3672}(761,\cdot)\) \(\chi_{3672}(905,\cdot)\) \(\chi_{3672}(1577,\cdot)\) \(\chi_{3672}(1721,\cdot)\) \(\chi_{3672}(1985,\cdot)\) \(\chi_{3672}(2129,\cdot)\) \(\chi_{3672}(2801,\cdot)\) \(\chi_{3672}(2945,\cdot)\) \(\chi_{3672}(3209,\cdot)\) \(\chi_{3672}(3353,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: 36.0.14555723661975701129520414713591505717264293810334661879947459060497463940377.1

Values on generators

\((919,1837,137,649)\) → \((1,1,e\left(\frac{13}{18}\right),-i)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 3672 }(497, a) \) \(-1\)\(1\)\(e\left(\frac{13}{36}\right)\)\(e\left(\frac{29}{36}\right)\)\(e\left(\frac{23}{36}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{7}{36}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{17}{36}\right)\)\(e\left(\frac{7}{36}\right)\)\(e\left(\frac{1}{6}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3672 }(497,a) \;\) at \(\;a = \) e.g. 2