Properties

Label 3648.el
Modulus $3648$
Conductor $1216$
Order $144$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3648, base_ring=CyclotomicField(144)) M = H._module chi = DirichletCharacter(H, M([0,135,0,40])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(13,3648)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(3648\)
Conductor: \(1216\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(144\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 1216.cf
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{144})$
Fixed field: Number field defined by a degree 144 polynomial (not computed)

First 31 of 48 characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(17\) \(23\) \(25\) \(29\) \(31\) \(35\)
\(\chi_{3648}(13,\cdot)\) \(-1\) \(1\) \(e\left(\frac{55}{144}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{65}{144}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{55}{72}\right)\) \(e\left(\frac{5}{144}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{61}{144}\right)\)
\(\chi_{3648}(109,\cdot)\) \(-1\) \(1\) \(e\left(\frac{95}{144}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{73}{144}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{61}{144}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{53}{144}\right)\)
\(\chi_{3648}(181,\cdot)\) \(-1\) \(1\) \(e\left(\frac{61}{144}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{59}{144}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{19}{72}\right)\) \(e\left(\frac{61}{72}\right)\) \(e\left(\frac{71}{144}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{31}{144}\right)\)
\(\chi_{3648}(205,\cdot)\) \(-1\) \(1\) \(e\left(\frac{103}{144}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{17}{144}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{31}{72}\right)\) \(e\left(\frac{101}{144}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{109}{144}\right)\)
\(\chi_{3648}(325,\cdot)\) \(-1\) \(1\) \(e\left(\frac{137}{144}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{31}{144}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{71}{72}\right)\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{91}{144}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{131}{144}\right)\)
\(\chi_{3648}(421,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{144}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{7}{144}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{67}{144}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{144}\right)\)
\(\chi_{3648}(469,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{144}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{83}{144}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{95}{144}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{144}\right)\)
\(\chi_{3648}(565,\cdot)\) \(-1\) \(1\) \(e\left(\frac{77}{144}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{91}{144}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{5}{72}\right)\) \(e\left(\frac{7}{144}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{143}{144}\right)\)
\(\chi_{3648}(637,\cdot)\) \(-1\) \(1\) \(e\left(\frac{43}{144}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{77}{144}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{17}{144}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{121}{144}\right)\)
\(\chi_{3648}(661,\cdot)\) \(-1\) \(1\) \(e\left(\frac{85}{144}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{35}{144}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{13}{72}\right)\) \(e\left(\frac{47}{144}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{55}{144}\right)\)
\(\chi_{3648}(781,\cdot)\) \(-1\) \(1\) \(e\left(\frac{119}{144}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{49}{144}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{47}{72}\right)\) \(e\left(\frac{37}{144}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{77}{144}\right)\)
\(\chi_{3648}(877,\cdot)\) \(-1\) \(1\) \(e\left(\frac{143}{144}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{25}{144}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{41}{72}\right)\) \(e\left(\frac{71}{72}\right)\) \(e\left(\frac{13}{144}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{101}{144}\right)\)
\(\chi_{3648}(925,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{144}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{101}{144}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{13}{72}\right)\) \(e\left(\frac{19}{72}\right)\) \(e\left(\frac{41}{144}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{97}{144}\right)\)
\(\chi_{3648}(1021,\cdot)\) \(-1\) \(1\) \(e\left(\frac{59}{144}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{109}{144}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{29}{72}\right)\) \(e\left(\frac{59}{72}\right)\) \(e\left(\frac{97}{144}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{89}{144}\right)\)
\(\chi_{3648}(1093,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{144}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{95}{144}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{55}{72}\right)\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{107}{144}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{67}{144}\right)\)
\(\chi_{3648}(1117,\cdot)\) \(-1\) \(1\) \(e\left(\frac{67}{144}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{53}{144}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{61}{72}\right)\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{137}{144}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{144}\right)\)
\(\chi_{3648}(1237,\cdot)\) \(-1\) \(1\) \(e\left(\frac{101}{144}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{67}{144}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{35}{72}\right)\) \(e\left(\frac{29}{72}\right)\) \(e\left(\frac{127}{144}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{23}{144}\right)\)
\(\chi_{3648}(1333,\cdot)\) \(-1\) \(1\) \(e\left(\frac{125}{144}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{43}{144}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{59}{72}\right)\) \(e\left(\frac{53}{72}\right)\) \(e\left(\frac{103}{144}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{47}{144}\right)\)
\(\chi_{3648}(1381,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{144}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{119}{144}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{31}{72}\right)\) \(e\left(\frac{1}{72}\right)\) \(e\left(\frac{131}{144}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{43}{144}\right)\)
\(\chi_{3648}(1477,\cdot)\) \(-1\) \(1\) \(e\left(\frac{41}{144}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{127}{144}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{47}{72}\right)\) \(e\left(\frac{41}{72}\right)\) \(e\left(\frac{43}{144}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{35}{144}\right)\)
\(\chi_{3648}(1549,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{144}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{113}{144}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{1}{72}\right)\) \(e\left(\frac{7}{72}\right)\) \(e\left(\frac{53}{144}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{13}{144}\right)\)
\(\chi_{3648}(1573,\cdot)\) \(-1\) \(1\) \(e\left(\frac{49}{144}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{71}{144}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{7}{72}\right)\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{83}{144}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{91}{144}\right)\)
\(\chi_{3648}(1693,\cdot)\) \(-1\) \(1\) \(e\left(\frac{83}{144}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{85}{144}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{53}{72}\right)\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{73}{144}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{113}{144}\right)\)
\(\chi_{3648}(1789,\cdot)\) \(-1\) \(1\) \(e\left(\frac{107}{144}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{61}{144}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{5}{72}\right)\) \(e\left(\frac{35}{72}\right)\) \(e\left(\frac{49}{144}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{137}{144}\right)\)
\(\chi_{3648}(1837,\cdot)\) \(-1\) \(1\) \(e\left(\frac{127}{144}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{137}{144}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{55}{72}\right)\) \(e\left(\frac{77}{144}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{133}{144}\right)\)
\(\chi_{3648}(1933,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{144}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{1}{144}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{133}{144}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{125}{144}\right)\)
\(\chi_{3648}(2005,\cdot)\) \(-1\) \(1\) \(e\left(\frac{133}{144}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{131}{144}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{19}{72}\right)\) \(e\left(\frac{61}{72}\right)\) \(e\left(\frac{143}{144}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{103}{144}\right)\)
\(\chi_{3648}(2029,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{144}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{89}{144}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{31}{72}\right)\) \(e\left(\frac{29}{144}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{37}{144}\right)\)
\(\chi_{3648}(2149,\cdot)\) \(-1\) \(1\) \(e\left(\frac{65}{144}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{103}{144}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{71}{72}\right)\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{19}{144}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{59}{144}\right)\)
\(\chi_{3648}(2245,\cdot)\) \(-1\) \(1\) \(e\left(\frac{89}{144}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{79}{144}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{139}{144}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{83}{144}\right)\)
\(\chi_{3648}(2293,\cdot)\) \(-1\) \(1\) \(e\left(\frac{109}{144}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{11}{144}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{23}{144}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{79}{144}\right)\)