Properties

Label 3648.1093
Modulus $3648$
Conductor $1216$
Order $144$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3648, base_ring=CyclotomicField(144)) M = H._module chi = DirichletCharacter(H, M([0,9,0,136]))
 
Copy content pari:[g,chi] = znchar(Mod(1093,3648))
 

Basic properties

Modulus: \(3648\)
Conductor: \(1216\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(144\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1216}(1093,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3648.el

\(\chi_{3648}(13,\cdot)\) \(\chi_{3648}(109,\cdot)\) \(\chi_{3648}(181,\cdot)\) \(\chi_{3648}(205,\cdot)\) \(\chi_{3648}(325,\cdot)\) \(\chi_{3648}(421,\cdot)\) \(\chi_{3648}(469,\cdot)\) \(\chi_{3648}(565,\cdot)\) \(\chi_{3648}(637,\cdot)\) \(\chi_{3648}(661,\cdot)\) \(\chi_{3648}(781,\cdot)\) \(\chi_{3648}(877,\cdot)\) \(\chi_{3648}(925,\cdot)\) \(\chi_{3648}(1021,\cdot)\) \(\chi_{3648}(1093,\cdot)\) \(\chi_{3648}(1117,\cdot)\) \(\chi_{3648}(1237,\cdot)\) \(\chi_{3648}(1333,\cdot)\) \(\chi_{3648}(1381,\cdot)\) \(\chi_{3648}(1477,\cdot)\) \(\chi_{3648}(1549,\cdot)\) \(\chi_{3648}(1573,\cdot)\) \(\chi_{3648}(1693,\cdot)\) \(\chi_{3648}(1789,\cdot)\) \(\chi_{3648}(1837,\cdot)\) \(\chi_{3648}(1933,\cdot)\) \(\chi_{3648}(2005,\cdot)\) \(\chi_{3648}(2029,\cdot)\) \(\chi_{3648}(2149,\cdot)\) \(\chi_{3648}(2245,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{144})$
Fixed field: Number field defined by a degree 144 polynomial (not computed)

Values on generators

\((2623,2053,1217,1921)\) → \((1,e\left(\frac{1}{16}\right),1,e\left(\frac{17}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 3648 }(1093, a) \) \(-1\)\(1\)\(e\left(\frac{25}{144}\right)\)\(e\left(\frac{7}{24}\right)\)\(e\left(\frac{31}{48}\right)\)\(e\left(\frac{95}{144}\right)\)\(e\left(\frac{7}{36}\right)\)\(e\left(\frac{55}{72}\right)\)\(e\left(\frac{25}{72}\right)\)\(e\left(\frac{107}{144}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{67}{144}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3648 }(1093,a) \;\) at \(\;a = \) e.g. 2