Properties

Label 3645.q
Modulus $3645$
Conductor $81$
Order $27$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3645, base_ring=CyclotomicField(54)) M = H._module chi = DirichletCharacter(H, M([4,0])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(136,3645)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(3645\)
Conductor: \(81\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(27\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 81.g
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{27})\)
Fixed field: Number field defined by a degree 27 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(11\) \(13\) \(14\) \(16\) \(17\) \(19\)
\(\chi_{3645}(136,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{9}\right)\)
\(\chi_{3645}(271,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{3645}(541,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{3645}(676,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{9}\right)\)
\(\chi_{3645}(946,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{8}{9}\right)\)
\(\chi_{3645}(1081,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{3645}(1351,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{9}\right)\)
\(\chi_{3645}(1486,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{3645}(1756,\cdot)\) \(1\) \(1\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{3645}(1891,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{9}\right)\)
\(\chi_{3645}(2161,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{8}{9}\right)\)
\(\chi_{3645}(2296,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{3645}(2566,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{9}\right)\)
\(\chi_{3645}(2701,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{3645}(2971,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{3645}(3106,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{9}\right)\)
\(\chi_{3645}(3376,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{8}{9}\right)\)
\(\chi_{3645}(3511,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{4}{9}\right)\)