Properties

Label 3645.917
Modulus $3645$
Conductor $405$
Order $108$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3645, base_ring=CyclotomicField(108)) M = H._module chi = DirichletCharacter(H, M([86,27]))
 
Copy content pari:[g,chi] = znchar(Mod(917,3645))
 

Basic properties

Modulus: \(3645\)
Conductor: \(405\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(108\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{405}(317,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3645.y

\(\chi_{3645}(53,\cdot)\) \(\chi_{3645}(107,\cdot)\) \(\chi_{3645}(188,\cdot)\) \(\chi_{3645}(377,\cdot)\) \(\chi_{3645}(458,\cdot)\) \(\chi_{3645}(512,\cdot)\) \(\chi_{3645}(593,\cdot)\) \(\chi_{3645}(782,\cdot)\) \(\chi_{3645}(863,\cdot)\) \(\chi_{3645}(917,\cdot)\) \(\chi_{3645}(998,\cdot)\) \(\chi_{3645}(1187,\cdot)\) \(\chi_{3645}(1268,\cdot)\) \(\chi_{3645}(1322,\cdot)\) \(\chi_{3645}(1403,\cdot)\) \(\chi_{3645}(1592,\cdot)\) \(\chi_{3645}(1673,\cdot)\) \(\chi_{3645}(1727,\cdot)\) \(\chi_{3645}(1808,\cdot)\) \(\chi_{3645}(1997,\cdot)\) \(\chi_{3645}(2078,\cdot)\) \(\chi_{3645}(2132,\cdot)\) \(\chi_{3645}(2213,\cdot)\) \(\chi_{3645}(2402,\cdot)\) \(\chi_{3645}(2483,\cdot)\) \(\chi_{3645}(2537,\cdot)\) \(\chi_{3645}(2618,\cdot)\) \(\chi_{3645}(2807,\cdot)\) \(\chi_{3645}(2888,\cdot)\) \(\chi_{3645}(2942,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{108})$
Fixed field: Number field defined by a degree 108 polynomial (not computed)

Values on generators

\((731,2917)\) → \((e\left(\frac{43}{54}\right),i)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 3645 }(917, a) \) \(1\)\(1\)\(e\left(\frac{5}{108}\right)\)\(e\left(\frac{5}{54}\right)\)\(e\left(\frac{107}{108}\right)\)\(e\left(\frac{5}{36}\right)\)\(e\left(\frac{19}{54}\right)\)\(e\left(\frac{13}{108}\right)\)\(e\left(\frac{1}{27}\right)\)\(e\left(\frac{5}{27}\right)\)\(e\left(\frac{19}{36}\right)\)\(e\left(\frac{13}{18}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3645 }(917,a) \;\) at \(\;a = \) e.g. 2