Properties

Label 3645.y
Modulus $3645$
Conductor $405$
Order $108$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3645, base_ring=CyclotomicField(108)) M = H._module chi = DirichletCharacter(H, M([94,81])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(53,3645)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(3645\)
Conductor: \(405\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(108\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 405.x
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{108})$
Fixed field: Number field defined by a degree 108 polynomial (not computed)

First 31 of 36 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(11\) \(13\) \(14\) \(16\) \(17\) \(19\)
\(\chi_{3645}(53,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{108}\right)\) \(e\left(\frac{13}{54}\right)\) \(e\left(\frac{73}{108}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{17}{54}\right)\) \(e\left(\frac{23}{108}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{3645}(107,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{108}\right)\) \(e\left(\frac{53}{54}\right)\) \(e\left(\frac{11}{108}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{7}{54}\right)\) \(e\left(\frac{73}{108}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{3645}(188,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{108}\right)\) \(e\left(\frac{5}{54}\right)\) \(e\left(\frac{53}{108}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{19}{54}\right)\) \(e\left(\frac{67}{108}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{3645}(377,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{108}\right)\) \(e\left(\frac{37}{54}\right)\) \(e\left(\frac{79}{108}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{11}{54}\right)\) \(e\left(\frac{53}{108}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{3645}(458,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{108}\right)\) \(e\left(\frac{43}{54}\right)\) \(e\left(\frac{13}{108}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{23}{54}\right)\) \(e\left(\frac{47}{108}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{3645}(512,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{108}\right)\) \(e\left(\frac{29}{54}\right)\) \(e\left(\frac{59}{108}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{13}{54}\right)\) \(e\left(\frac{97}{108}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{3645}(593,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{108}\right)\) \(e\left(\frac{35}{54}\right)\) \(e\left(\frac{101}{108}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{25}{54}\right)\) \(e\left(\frac{91}{108}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{3645}(782,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{108}\right)\) \(e\left(\frac{13}{54}\right)\) \(e\left(\frac{19}{108}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{17}{54}\right)\) \(e\left(\frac{77}{108}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{3645}(863,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{108}\right)\) \(e\left(\frac{19}{54}\right)\) \(e\left(\frac{61}{108}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{29}{54}\right)\) \(e\left(\frac{71}{108}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{3645}(917,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{108}\right)\) \(e\left(\frac{5}{54}\right)\) \(e\left(\frac{107}{108}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{19}{54}\right)\) \(e\left(\frac{13}{108}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{3645}(998,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{108}\right)\) \(e\left(\frac{11}{54}\right)\) \(e\left(\frac{41}{108}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{31}{54}\right)\) \(e\left(\frac{7}{108}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{3645}(1187,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{108}\right)\) \(e\left(\frac{43}{54}\right)\) \(e\left(\frac{67}{108}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{23}{54}\right)\) \(e\left(\frac{101}{108}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{3645}(1268,\cdot)\) \(1\) \(1\) \(e\left(\frac{103}{108}\right)\) \(e\left(\frac{49}{54}\right)\) \(e\left(\frac{1}{108}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{35}{54}\right)\) \(e\left(\frac{95}{108}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{3645}(1322,\cdot)\) \(1\) \(1\) \(e\left(\frac{89}{108}\right)\) \(e\left(\frac{35}{54}\right)\) \(e\left(\frac{47}{108}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{25}{54}\right)\) \(e\left(\frac{37}{108}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{3645}(1403,\cdot)\) \(1\) \(1\) \(e\left(\frac{95}{108}\right)\) \(e\left(\frac{41}{54}\right)\) \(e\left(\frac{89}{108}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{37}{54}\right)\) \(e\left(\frac{31}{108}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{3645}(1592,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{108}\right)\) \(e\left(\frac{19}{54}\right)\) \(e\left(\frac{7}{108}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{29}{54}\right)\) \(e\left(\frac{17}{108}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{3645}(1673,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{108}\right)\) \(e\left(\frac{25}{54}\right)\) \(e\left(\frac{49}{108}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{41}{54}\right)\) \(e\left(\frac{11}{108}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{3645}(1727,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{108}\right)\) \(e\left(\frac{11}{54}\right)\) \(e\left(\frac{95}{108}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{31}{54}\right)\) \(e\left(\frac{61}{108}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{3645}(1808,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{108}\right)\) \(e\left(\frac{17}{54}\right)\) \(e\left(\frac{29}{108}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{43}{54}\right)\) \(e\left(\frac{55}{108}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{3645}(1997,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{108}\right)\) \(e\left(\frac{49}{54}\right)\) \(e\left(\frac{55}{108}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{35}{54}\right)\) \(e\left(\frac{41}{108}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{3645}(2078,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{108}\right)\) \(e\left(\frac{1}{54}\right)\) \(e\left(\frac{97}{108}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{47}{54}\right)\) \(e\left(\frac{35}{108}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{3645}(2132,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{108}\right)\) \(e\left(\frac{41}{54}\right)\) \(e\left(\frac{35}{108}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{37}{54}\right)\) \(e\left(\frac{85}{108}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{3645}(2213,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{108}\right)\) \(e\left(\frac{47}{54}\right)\) \(e\left(\frac{77}{108}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{49}{54}\right)\) \(e\left(\frac{79}{108}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{3645}(2402,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{108}\right)\) \(e\left(\frac{25}{54}\right)\) \(e\left(\frac{103}{108}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{41}{54}\right)\) \(e\left(\frac{65}{108}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{3645}(2483,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{108}\right)\) \(e\left(\frac{31}{54}\right)\) \(e\left(\frac{37}{108}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{53}{54}\right)\) \(e\left(\frac{59}{108}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{3645}(2537,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{108}\right)\) \(e\left(\frac{17}{54}\right)\) \(e\left(\frac{83}{108}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{43}{54}\right)\) \(e\left(\frac{1}{108}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{3645}(2618,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{108}\right)\) \(e\left(\frac{23}{54}\right)\) \(e\left(\frac{17}{108}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{1}{54}\right)\) \(e\left(\frac{103}{108}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{3645}(2807,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{108}\right)\) \(e\left(\frac{1}{54}\right)\) \(e\left(\frac{43}{108}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{47}{54}\right)\) \(e\left(\frac{89}{108}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{3645}(2888,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{108}\right)\) \(e\left(\frac{7}{54}\right)\) \(e\left(\frac{85}{108}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{5}{54}\right)\) \(e\left(\frac{83}{108}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{3645}(2942,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{108}\right)\) \(e\left(\frac{47}{54}\right)\) \(e\left(\frac{23}{108}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{49}{54}\right)\) \(e\left(\frac{25}{108}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{3645}(3023,\cdot)\) \(1\) \(1\) \(e\left(\frac{107}{108}\right)\) \(e\left(\frac{53}{54}\right)\) \(e\left(\frac{65}{108}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{7}{54}\right)\) \(e\left(\frac{19}{108}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{1}{18}\right)\)