Properties

Label 363.i
Modulus $363$
Conductor $121$
Order $11$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(363, base_ring=CyclotomicField(22))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,10]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(34,363))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(363\)
Conductor: \(121\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(11\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 121.e
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: 11.11.672749994932560009201.1

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(13\) \(14\) \(16\) \(17\)
\(\chi_{363}(34,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{3}{11}\right)\)
\(\chi_{363}(67,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{6}{11}\right)\)
\(\chi_{363}(100,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{9}{11}\right)\)
\(\chi_{363}(133,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{1}{11}\right)\)
\(\chi_{363}(166,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{4}{11}\right)\)
\(\chi_{363}(199,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{7}{11}\right)\)
\(\chi_{363}(232,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{10}{11}\right)\)
\(\chi_{363}(265,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{2}{11}\right)\)
\(\chi_{363}(298,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{5}{11}\right)\)
\(\chi_{363}(331,\cdot)\) \(1\) \(1\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{8}{11}\right)\)