Properties

Label 363.331
Modulus $363$
Conductor $121$
Order $11$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(22)) M = H._module chi = DirichletCharacter(H, M([0,12]))
 
Copy content pari:[g,chi] = znchar(Mod(331,363))
 

Basic properties

Modulus: \(363\)
Conductor: \(121\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(11\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{121}(89,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 363.i

\(\chi_{363}(34,\cdot)\) \(\chi_{363}(67,\cdot)\) \(\chi_{363}(100,\cdot)\) \(\chi_{363}(133,\cdot)\) \(\chi_{363}(166,\cdot)\) \(\chi_{363}(199,\cdot)\) \(\chi_{363}(232,\cdot)\) \(\chi_{363}(265,\cdot)\) \(\chi_{363}(298,\cdot)\) \(\chi_{363}(331,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: 11.11.672749994932560009201.1

Values on generators

\((122,244)\) → \((1,e\left(\frac{6}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(13\)\(14\)\(16\)\(17\)
\( \chi_{ 363 }(331, a) \) \(1\)\(1\)\(e\left(\frac{6}{11}\right)\)\(e\left(\frac{1}{11}\right)\)\(e\left(\frac{4}{11}\right)\)\(e\left(\frac{9}{11}\right)\)\(e\left(\frac{7}{11}\right)\)\(e\left(\frac{10}{11}\right)\)\(e\left(\frac{1}{11}\right)\)\(e\left(\frac{4}{11}\right)\)\(e\left(\frac{2}{11}\right)\)\(e\left(\frac{8}{11}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 363 }(331,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 363 }(331,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 363 }(331,·),\chi_{ 363 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 363 }(331,·)) \;\) at \(\; a,b = \) e.g. 1,2