Properties

Label 357.53
Modulus $357$
Conductor $357$
Order $24$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(357, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([12,16,21]))
 
Copy content pari:[g,chi] = znchar(Mod(53,357))
 

Basic properties

Modulus: \(357\)
Conductor: \(357\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(24\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 357.bg

\(\chi_{357}(2,\cdot)\) \(\chi_{357}(32,\cdot)\) \(\chi_{357}(53,\cdot)\) \(\chi_{357}(128,\cdot)\) \(\chi_{357}(179,\cdot)\) \(\chi_{357}(212,\cdot)\) \(\chi_{357}(263,\cdot)\) \(\chi_{357}(338,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: Number field defined by a degree 24 polynomial

Values on generators

\((239,52,190)\) → \((-1,e\left(\frac{2}{3}\right),e\left(\frac{7}{8}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(19\)\(20\)
\( \chi_{ 357 }(53, a) \) \(-1\)\(1\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{5}{24}\right)\)\(i\)\(e\left(\frac{7}{24}\right)\)\(e\left(\frac{7}{24}\right)\)\(-1\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{3}{8}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 357 }(53,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 357 }(53,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 357 }(53,·),\chi_{ 357 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 357 }(53,·)) \;\) at \(\; a,b = \) e.g. 1,2