sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(357, base_ring=CyclotomicField(24))
M = H._module
chi = DirichletCharacter(H, M([12,16,21]))
pari:[g,chi] = znchar(Mod(53,357))
| Modulus: | \(357\) | |
| Conductor: | \(357\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(24\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{357}(2,\cdot)\)
\(\chi_{357}(32,\cdot)\)
\(\chi_{357}(53,\cdot)\)
\(\chi_{357}(128,\cdot)\)
\(\chi_{357}(179,\cdot)\)
\(\chi_{357}(212,\cdot)\)
\(\chi_{357}(263,\cdot)\)
\(\chi_{357}(338,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((239,52,190)\) → \((-1,e\left(\frac{2}{3}\right),e\left(\frac{7}{8}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(19\) | \(20\) |
| \( \chi_{ 357 }(53, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(i\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{3}{8}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)