sage: H = DirichletGroup(357)
pari: g = idealstar(,357,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 192 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{48}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{357}(239,\cdot)$, $\chi_{357}(52,\cdot)$, $\chi_{357}(190,\cdot)$ |
First 32 of 192 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(19\) | \(20\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{357}(1,\cdot)\) | 357.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{357}(2,\cdot)\) | 357.bg | 24 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(i\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{3}{8}\right)\) |
\(\chi_{357}(4,\cdot)\) | 357.bb | 12 | no | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) |
\(\chi_{357}(5,\cdot)\) | 357.bn | 48 | yes | \(-1\) | \(1\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(-i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{5}{16}\right)\) |
\(\chi_{357}(8,\cdot)\) | 357.v | 8 | no | \(-1\) | \(1\) | \(i\) | \(-1\) | \(e\left(\frac{5}{8}\right)\) | \(-i\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(-1\) | \(1\) | \(-i\) | \(e\left(\frac{1}{8}\right)\) |
\(\chi_{357}(10,\cdot)\) | 357.bl | 48 | no | \(1\) | \(1\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{11}{16}\right)\) |
\(\chi_{357}(11,\cdot)\) | 357.bm | 48 | yes | \(1\) | \(1\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{15}{16}\right)\) |
\(\chi_{357}(13,\cdot)\) | 357.j | 4 | no | \(-1\) | \(1\) | \(-1\) | \(1\) | \(-i\) | \(-1\) | \(i\) | \(-i\) | \(-1\) | \(1\) | \(1\) | \(-i\) |
\(\chi_{357}(16,\cdot)\) | 357.p | 6 | no | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) |
\(\chi_{357}(19,\cdot)\) | 357.bi | 24 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(-i\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{3}{8}\right)\) |
\(\chi_{357}(20,\cdot)\) | 357.be | 16 | yes | \(-1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(-i\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(-i\) | \(-1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{16}\right)\) |
\(\chi_{357}(22,\cdot)\) | 357.bd | 16 | no | \(-1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(-i\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(i\) | \(-1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{5}{16}\right)\) |
\(\chi_{357}(23,\cdot)\) | 357.bm | 48 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(-i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{7}{16}\right)\) |
\(\chi_{357}(25,\cdot)\) | 357.bh | 24 | no | \(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(i\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{8}\right)\) |
\(\chi_{357}(26,\cdot)\) | 357.bj | 24 | yes | \(1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(-i\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{8}\right)\) |
\(\chi_{357}(29,\cdot)\) | 357.bf | 16 | no | \(1\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(-i\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(i\) | \(-1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{5}{16}\right)\) |
\(\chi_{357}(31,\cdot)\) | 357.bl | 48 | no | \(1\) | \(1\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{1}{16}\right)\) |
\(\chi_{357}(32,\cdot)\) | 357.bg | 24 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(i\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{8}\right)\) |
\(\chi_{357}(37,\cdot)\) | 357.bk | 48 | no | \(-1\) | \(1\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{1}{16}\right)\) |
\(\chi_{357}(38,\cdot)\) | 357.y | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-i\) |
\(\chi_{357}(40,\cdot)\) | 357.bl | 48 | no | \(1\) | \(1\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{7}{16}\right)\) |
\(\chi_{357}(41,\cdot)\) | 357.be | 16 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(i\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(i\) | \(-1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{11}{16}\right)\) |
\(\chi_{357}(43,\cdot)\) | 357.u | 8 | no | \(1\) | \(1\) | \(-i\) | \(-1\) | \(e\left(\frac{5}{8}\right)\) | \(i\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(-1\) | \(1\) | \(-i\) | \(e\left(\frac{1}{8}\right)\) |
\(\chi_{357}(44,\cdot)\) | 357.bm | 48 | yes | \(1\) | \(1\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(-i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{11}{16}\right)\) |
\(\chi_{357}(46,\cdot)\) | 357.bk | 48 | no | \(-1\) | \(1\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{13}{16}\right)\) |
\(\chi_{357}(47,\cdot)\) | 357.y | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(i\) |
\(\chi_{357}(50,\cdot)\) | 357.e | 2 | no | \(-1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{357}(52,\cdot)\) | 357.o | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) |
\(\chi_{357}(53,\cdot)\) | 357.bg | 24 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(i\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{3}{8}\right)\) |
\(\chi_{357}(55,\cdot)\) | 357.j | 4 | no | \(-1\) | \(1\) | \(-1\) | \(1\) | \(i\) | \(-1\) | \(-i\) | \(i\) | \(-1\) | \(1\) | \(1\) | \(i\) |
\(\chi_{357}(58,\cdot)\) | 357.bk | 48 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(-i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{11}{16}\right)\) |
\(\chi_{357}(59,\cdot)\) | 357.bj | 24 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(-i\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{8}\right)\) |