Properties

Modulus $357$
Structure \(C_{2}\times C_{2}\times C_{48}\)
Order $192$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(357)
 
pari: g = idealstar(,357,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 192
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{2}\times C_{48}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{357}(239,\cdot)$, $\chi_{357}(52,\cdot)$, $\chi_{357}(190,\cdot)$

First 32 of 192 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(2\) \(4\) \(5\) \(8\) \(10\) \(11\) \(13\) \(16\) \(19\) \(20\)
\(\chi_{357}(1,\cdot)\) 357.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{357}(2,\cdot)\) 357.bg 24 yes \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{24}\right)\) \(i\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{23}{24}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{357}(4,\cdot)\) 357.bb 12 no \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(-1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(-i\)
\(\chi_{357}(5,\cdot)\) 357.bn 48 yes \(-1\) \(1\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{1}{48}\right)\) \(-i\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{5}{16}\right)\)
\(\chi_{357}(8,\cdot)\) 357.v 8 no \(-1\) \(1\) \(i\) \(-1\) \(e\left(\frac{5}{8}\right)\) \(-i\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(-1\) \(1\) \(-i\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{357}(10,\cdot)\) 357.bl 48 no \(1\) \(1\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{47}{48}\right)\) \(i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{11}{16}\right)\)
\(\chi_{357}(11,\cdot)\) 357.bm 48 yes \(1\) \(1\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{11}{48}\right)\) \(-i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{15}{16}\right)\)
\(\chi_{357}(13,\cdot)\) 357.j 4 no \(-1\) \(1\) \(-1\) \(1\) \(-i\) \(-1\) \(i\) \(-i\) \(-1\) \(1\) \(1\) \(-i\)
\(\chi_{357}(16,\cdot)\) 357.p 6 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\)
\(\chi_{357}(19,\cdot)\) 357.bi 24 no \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{24}\right)\) \(-i\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{11}{24}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{357}(20,\cdot)\) 357.be 16 yes \(-1\) \(1\) \(e\left(\frac{3}{8}\right)\) \(-i\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(-i\) \(-1\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{16}\right)\)
\(\chi_{357}(22,\cdot)\) 357.bd 16 no \(-1\) \(1\) \(e\left(\frac{3}{8}\right)\) \(-i\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(i\) \(-1\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{16}\right)\)
\(\chi_{357}(23,\cdot)\) 357.bm 48 yes \(1\) \(1\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{19}{48}\right)\) \(-i\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{7}{16}\right)\)
\(\chi_{357}(25,\cdot)\) 357.bh 24 no \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{24}\right)\) \(i\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{1}{24}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{357}(26,\cdot)\) 357.bj 24 yes \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{24}\right)\) \(-i\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{17}{24}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{357}(29,\cdot)\) 357.bf 16 no \(1\) \(1\) \(e\left(\frac{7}{8}\right)\) \(-i\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(i\) \(-1\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{16}\right)\)
\(\chi_{357}(31,\cdot)\) 357.bl 48 no \(1\) \(1\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{29}{48}\right)\) \(-i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{1}{16}\right)\)
\(\chi_{357}(32,\cdot)\) 357.bg 24 yes \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{24}\right)\) \(i\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{19}{24}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{357}(37,\cdot)\) 357.bk 48 no \(-1\) \(1\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{37}{48}\right)\) \(i\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{1}{16}\right)\)
\(\chi_{357}(38,\cdot)\) 357.y 12 yes \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(-i\)
\(\chi_{357}(40,\cdot)\) 357.bl 48 no \(1\) \(1\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{43}{48}\right)\) \(i\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{7}{16}\right)\)
\(\chi_{357}(41,\cdot)\) 357.be 16 yes \(-1\) \(1\) \(e\left(\frac{1}{8}\right)\) \(i\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(i\) \(-1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{11}{16}\right)\)
\(\chi_{357}(43,\cdot)\) 357.u 8 no \(1\) \(1\) \(-i\) \(-1\) \(e\left(\frac{5}{8}\right)\) \(i\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(-1\) \(1\) \(-i\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{357}(44,\cdot)\) 357.bm 48 yes \(1\) \(1\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{7}{48}\right)\) \(-i\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{11}{16}\right)\)
\(\chi_{357}(46,\cdot)\) 357.bk 48 no \(-1\) \(1\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{17}{48}\right)\) \(i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{13}{16}\right)\)
\(\chi_{357}(47,\cdot)\) 357.y 12 yes \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(i\)
\(\chi_{357}(50,\cdot)\) 357.e 2 no \(-1\) \(1\) \(-1\) \(1\) \(1\) \(-1\) \(-1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{357}(52,\cdot)\) 357.o 6 no \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\)
\(\chi_{357}(53,\cdot)\) 357.bg 24 yes \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{24}\right)\) \(i\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{7}{24}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{357}(55,\cdot)\) 357.j 4 no \(-1\) \(1\) \(-1\) \(1\) \(i\) \(-1\) \(-i\) \(i\) \(-1\) \(1\) \(1\) \(i\)
\(\chi_{357}(58,\cdot)\) 357.bk 48 no \(-1\) \(1\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{7}{48}\right)\) \(-i\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{11}{16}\right)\)
\(\chi_{357}(59,\cdot)\) 357.bj 24 yes \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{24}\right)\) \(-i\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{13}{24}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{8}\right)\)
Click here to search among the remaining 160 characters.