![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(351, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([2,33]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(351, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([2,33]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(137,351))
        pari:[g,chi] = znchar(Mod(137,351))
         
     
    
  
   | Modulus: | \(351\) |  | 
   | Conductor: | \(351\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(36\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{351}(20,\cdot)\)
  \(\chi_{351}(41,\cdot)\)
  \(\chi_{351}(50,\cdot)\)
  \(\chi_{351}(110,\cdot)\)
  \(\chi_{351}(137,\cdot)\)
  \(\chi_{351}(158,\cdot)\)
  \(\chi_{351}(167,\cdot)\)
  \(\chi_{351}(227,\cdot)\)
  \(\chi_{351}(254,\cdot)\)
  \(\chi_{351}(275,\cdot)\)
  \(\chi_{351}(284,\cdot)\)
  \(\chi_{351}(344,\cdot)\)
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((326,28)\) → \((e\left(\frac{1}{18}\right),e\left(\frac{11}{12}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(17\) | 
    
    
      | \( \chi_{ 351 }(137, a) \) | \(1\) | \(1\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(-1\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.gauss_sum(a)
        sage:chi.gauss_sum(a)
         
     
    
    
        ![Copy content]() pari:znchargauss(g,chi,a)
        pari:znchargauss(g,chi,a)
         
     
    
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.kloosterman_sum(a,b)
        sage:chi.kloosterman_sum(a,b)