Properties

Label 3503.cx
Modulus $3503$
Conductor $3503$
Order $560$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3503, base_ring=CyclotomicField(560)) M = H._module chi = DirichletCharacter(H, M([504,205])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(23,3503)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(3503\)
Conductor: \(3503\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(560\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{560})$
Fixed field: Number field defined by a degree 560 polynomial (not computed)

First 31 of 192 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(11\)
\(\chi_{3503}(23,\cdot)\) \(1\) \(1\) \(e\left(\frac{139}{140}\right)\) \(e\left(\frac{149}{560}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{43}{112}\right)\) \(e\left(\frac{29}{112}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{137}{140}\right)\) \(e\left(\frac{149}{280}\right)\) \(e\left(\frac{211}{560}\right)\) \(e\left(\frac{221}{280}\right)\)
\(\chi_{3503}(27,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{140}\right)\) \(e\left(\frac{71}{560}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{25}{112}\right)\) \(e\left(\frac{95}{112}\right)\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{23}{140}\right)\) \(e\left(\frac{71}{280}\right)\) \(e\left(\frac{529}{560}\right)\) \(e\left(\frac{79}{280}\right)\)
\(\chi_{3503}(29,\cdot)\) \(1\) \(1\) \(e\left(\frac{103}{140}\right)\) \(e\left(\frac{53}{560}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{107}{112}\right)\) \(e\left(\frac{93}{112}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{29}{140}\right)\) \(e\left(\frac{53}{280}\right)\) \(e\left(\frac{387}{560}\right)\) \(e\left(\frac{197}{280}\right)\)
\(\chi_{3503}(46,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{140}\right)\) \(e\left(\frac{97}{560}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{31}{112}\right)\) \(e\left(\frac{73}{112}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{61}{140}\right)\) \(e\left(\frac{97}{280}\right)\) \(e\left(\frac{423}{560}\right)\) \(e\left(\frac{33}{280}\right)\)
\(\chi_{3503}(54,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{140}\right)\) \(e\left(\frac{19}{560}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{13}{112}\right)\) \(e\left(\frac{27}{112}\right)\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{87}{140}\right)\) \(e\left(\frac{19}{280}\right)\) \(e\left(\frac{181}{560}\right)\) \(e\left(\frac{171}{280}\right)\)
\(\chi_{3503}(58,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{140}\right)\) \(e\left(\frac{1}{560}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{95}{112}\right)\) \(e\left(\frac{25}{112}\right)\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{93}{140}\right)\) \(e\left(\frac{1}{280}\right)\) \(e\left(\frac{39}{560}\right)\) \(e\left(\frac{9}{280}\right)\)
\(\chi_{3503}(89,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{140}\right)\) \(e\left(\frac{521}{560}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{103}{112}\right)\) \(e\left(\frac{33}{112}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{13}{140}\right)\) \(e\left(\frac{241}{280}\right)\) \(e\left(\frac{159}{560}\right)\) \(e\left(\frac{209}{280}\right)\)
\(\chi_{3503}(108,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{140}\right)\) \(e\left(\frac{527}{560}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{1}{112}\right)\) \(e\left(\frac{71}{112}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{11}{140}\right)\) \(e\left(\frac{247}{280}\right)\) \(e\left(\frac{393}{560}\right)\) \(e\left(\frac{263}{280}\right)\)
\(\chi_{3503}(116,\cdot)\) \(1\) \(1\) \(e\left(\frac{99}{140}\right)\) \(e\left(\frac{509}{560}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{83}{112}\right)\) \(e\left(\frac{69}{112}\right)\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{17}{140}\right)\) \(e\left(\frac{229}{280}\right)\) \(e\left(\frac{251}{560}\right)\) \(e\left(\frac{101}{280}\right)\)
\(\chi_{3503}(147,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{140}\right)\) \(e\left(\frac{29}{560}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{67}{112}\right)\) \(e\left(\frac{53}{112}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{37}{140}\right)\) \(e\left(\frac{29}{280}\right)\) \(e\left(\frac{11}{560}\right)\) \(e\left(\frac{261}{280}\right)\)
\(\chi_{3503}(151,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{140}\right)\) \(e\left(\frac{51}{560}\right)\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{29}{112}\right)\) \(e\left(\frac{43}{112}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{123}{140}\right)\) \(e\left(\frac{51}{280}\right)\) \(e\left(\frac{309}{560}\right)\) \(e\left(\frac{179}{280}\right)\)
\(\chi_{3503}(209,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{140}\right)\) \(e\left(\frac{249}{560}\right)\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{23}{112}\right)\) \(e\left(\frac{65}{112}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{57}{140}\right)\) \(e\left(\frac{249}{280}\right)\) \(e\left(\frac{191}{560}\right)\) \(e\left(\frac{1}{280}\right)\)
\(\chi_{3503}(232,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{140}\right)\) \(e\left(\frac{457}{560}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{71}{112}\right)\) \(e\left(\frac{1}{112}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{81}{140}\right)\) \(e\left(\frac{177}{280}\right)\) \(e\left(\frac{463}{560}\right)\) \(e\left(\frac{193}{280}\right)\)
\(\chi_{3503}(246,\cdot)\) \(1\) \(1\) \(e\left(\frac{93}{140}\right)\) \(e\left(\frac{143}{560}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{33}{112}\right)\) \(e\left(\frac{103}{112}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{139}{140}\right)\) \(e\left(\frac{143}{280}\right)\) \(e\left(\frac{537}{560}\right)\) \(e\left(\frac{167}{280}\right)\)
\(\chi_{3503}(263,\cdot)\) \(1\) \(1\) \(e\left(\frac{137}{140}\right)\) \(e\left(\frac{167}{560}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{73}{112}\right)\) \(e\left(\frac{31}{112}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{131}{140}\right)\) \(e\left(\frac{167}{280}\right)\) \(e\left(\frac{353}{560}\right)\) \(e\left(\frac{103}{280}\right)\)
\(\chi_{3503}(271,\cdot)\) \(1\) \(1\) \(e\left(\frac{99}{140}\right)\) \(e\left(\frac{369}{560}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{111}{112}\right)\) \(e\left(\frac{41}{112}\right)\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{17}{140}\right)\) \(e\left(\frac{89}{280}\right)\) \(e\left(\frac{391}{560}\right)\) \(e\left(\frac{241}{280}\right)\)
\(\chi_{3503}(294,\cdot)\) \(1\) \(1\) \(e\left(\frac{127}{140}\right)\) \(e\left(\frac{537}{560}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{55}{112}\right)\) \(e\left(\frac{97}{112}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{101}{140}\right)\) \(e\left(\frac{257}{280}\right)\) \(e\left(\frac{223}{560}\right)\) \(e\left(\frac{73}{280}\right)\)
\(\chi_{3503}(302,\cdot)\) \(1\) \(1\) \(e\left(\frac{109}{140}\right)\) \(e\left(\frac{559}{560}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{17}{112}\right)\) \(e\left(\frac{87}{112}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{47}{140}\right)\) \(e\left(\frac{279}{280}\right)\) \(e\left(\frac{521}{560}\right)\) \(e\left(\frac{271}{280}\right)\)
\(\chi_{3503}(306,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{140}\right)\) \(e\left(\frac{151}{560}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{9}{112}\right)\) \(e\left(\frac{79}{112}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{43}{140}\right)\) \(e\left(\frac{151}{280}\right)\) \(e\left(\frac{289}{560}\right)\) \(e\left(\frac{239}{280}\right)\)
\(\chi_{3503}(333,\cdot)\) \(1\) \(1\) \(e\left(\frac{139}{140}\right)\) \(e\left(\frac{289}{560}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{15}{112}\right)\) \(e\left(\frac{57}{112}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{137}{140}\right)\) \(e\left(\frac{9}{280}\right)\) \(e\left(\frac{71}{560}\right)\) \(e\left(\frac{81}{280}\right)\)
\(\chi_{3503}(356,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{140}\right)\) \(e\left(\frac{417}{560}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{79}{112}\right)\) \(e\left(\frac{9}{112}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{1}{140}\right)\) \(e\left(\frac{137}{280}\right)\) \(e\left(\frac{23}{560}\right)\) \(e\left(\frac{113}{280}\right)\)
\(\chi_{3503}(368,\cdot)\) \(1\) \(1\) \(e\left(\frac{131}{140}\right)\) \(e\left(\frac{501}{560}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{107}{112}\right)\) \(e\left(\frac{93}{112}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{113}{140}\right)\) \(e\left(\frac{221}{280}\right)\) \(e\left(\frac{499}{560}\right)\) \(e\left(\frac{29}{280}\right)\)
\(\chi_{3503}(418,\cdot)\) \(1\) \(1\) \(e\left(\frac{87}{140}\right)\) \(e\left(\frac{197}{560}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{11}{112}\right)\) \(e\left(\frac{109}{112}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{121}{140}\right)\) \(e\left(\frac{197}{280}\right)\) \(e\left(\frac{403}{560}\right)\) \(e\left(\frac{93}{280}\right)\)
\(\chi_{3503}(432,\cdot)\) \(1\) \(1\) \(e\left(\frac{93}{140}\right)\) \(e\left(\frac{423}{560}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{89}{112}\right)\) \(e\left(\frac{47}{112}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{139}{140}\right)\) \(e\left(\frac{143}{280}\right)\) \(e\left(\frac{257}{560}\right)\) \(e\left(\frac{167}{280}\right)\)
\(\chi_{3503}(449,\cdot)\) \(1\) \(1\) \(e\left(\frac{127}{140}\right)\) \(e\left(\frac{117}{560}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{27}{112}\right)\) \(e\left(\frac{13}{112}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{101}{140}\right)\) \(e\left(\frac{117}{280}\right)\) \(e\left(\frac{83}{560}\right)\) \(e\left(\frac{213}{280}\right)\)
\(\chi_{3503}(457,\cdot)\) \(1\) \(1\) \(e\left(\frac{69}{140}\right)\) \(e\left(\frac{359}{560}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{57}{112}\right)\) \(e\left(\frac{15}{112}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{67}{140}\right)\) \(e\left(\frac{79}{280}\right)\) \(e\left(\frac{1}{560}\right)\) \(e\left(\frac{151}{280}\right)\)
\(\chi_{3503}(511,\cdot)\) \(1\) \(1\) \(e\left(\frac{57}{140}\right)\) \(e\left(\frac{187}{560}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{69}{112}\right)\) \(e\left(\frac{83}{112}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{31}{140}\right)\) \(e\left(\frac{187}{280}\right)\) \(e\left(\frac{13}{560}\right)\) \(e\left(\frac{3}{280}\right)\)
\(\chi_{3503}(519,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{140}\right)\) \(e\left(\frac{489}{560}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{87}{112}\right)\) \(e\left(\frac{17}{112}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{117}{140}\right)\) \(e\left(\frac{209}{280}\right)\) \(e\left(\frac{31}{560}\right)\) \(e\left(\frac{201}{280}\right)\)
\(\chi_{3503}(542,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{140}\right)\) \(e\left(\frac{317}{560}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{99}{112}\right)\) \(e\left(\frac{85}{112}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{81}{140}\right)\) \(e\left(\frac{37}{280}\right)\) \(e\left(\frac{43}{560}\right)\) \(e\left(\frac{53}{280}\right)\)
\(\chi_{3503}(585,\cdot)\) \(1\) \(1\) \(e\left(\frac{121}{140}\right)\) \(e\left(\frac{31}{560}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{33}{112}\right)\) \(e\left(\frac{103}{112}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{83}{140}\right)\) \(e\left(\frac{31}{280}\right)\) \(e\left(\frac{89}{560}\right)\) \(e\left(\frac{279}{280}\right)\)
\(\chi_{3503}(604,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{140}\right)\) \(e\left(\frac{507}{560}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{5}{112}\right)\) \(e\left(\frac{19}{112}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{111}{140}\right)\) \(e\left(\frac{227}{280}\right)\) \(e\left(\frac{173}{560}\right)\) \(e\left(\frac{83}{280}\right)\)