sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3503, base_ring=CyclotomicField(560))
M = H._module
chi = DirichletCharacter(H, M([392,115]))
pari:[g,chi] = znchar(Mod(604,3503))
| Modulus: | \(3503\) | |
| Conductor: | \(3503\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(560\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3503}(23,\cdot)\)
\(\chi_{3503}(27,\cdot)\)
\(\chi_{3503}(29,\cdot)\)
\(\chi_{3503}(46,\cdot)\)
\(\chi_{3503}(54,\cdot)\)
\(\chi_{3503}(58,\cdot)\)
\(\chi_{3503}(89,\cdot)\)
\(\chi_{3503}(108,\cdot)\)
\(\chi_{3503}(116,\cdot)\)
\(\chi_{3503}(147,\cdot)\)
\(\chi_{3503}(151,\cdot)\)
\(\chi_{3503}(209,\cdot)\)
\(\chi_{3503}(232,\cdot)\)
\(\chi_{3503}(246,\cdot)\)
\(\chi_{3503}(263,\cdot)\)
\(\chi_{3503}(271,\cdot)\)
\(\chi_{3503}(294,\cdot)\)
\(\chi_{3503}(302,\cdot)\)
\(\chi_{3503}(306,\cdot)\)
\(\chi_{3503}(333,\cdot)\)
\(\chi_{3503}(356,\cdot)\)
\(\chi_{3503}(368,\cdot)\)
\(\chi_{3503}(418,\cdot)\)
\(\chi_{3503}(432,\cdot)\)
\(\chi_{3503}(449,\cdot)\)
\(\chi_{3503}(457,\cdot)\)
\(\chi_{3503}(511,\cdot)\)
\(\chi_{3503}(519,\cdot)\)
\(\chi_{3503}(542,\cdot)\)
\(\chi_{3503}(585,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3165,342)\) → \((e\left(\frac{7}{10}\right),e\left(\frac{23}{112}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 3503 }(604, a) \) |
\(1\) | \(1\) | \(e\left(\frac{37}{140}\right)\) | \(e\left(\frac{507}{560}\right)\) | \(e\left(\frac{37}{70}\right)\) | \(e\left(\frac{5}{112}\right)\) | \(e\left(\frac{19}{112}\right)\) | \(e\left(\frac{17}{70}\right)\) | \(e\left(\frac{111}{140}\right)\) | \(e\left(\frac{227}{280}\right)\) | \(e\left(\frac{173}{560}\right)\) | \(e\left(\frac{83}{280}\right)\) |
sage:chi.jacobi_sum(n)