sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3503, base_ring=CyclotomicField(840))
M = H._module
chi = DirichletCharacter(H, M([392,345]))
pari:[g,chi] = znchar(Mod(165,3503))
| Modulus: | \(3503\) | |
| Conductor: | \(3503\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(840\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3503}(9,\cdot)\)
\(\chi_{3503}(41,\cdot)\)
\(\chi_{3503}(50,\cdot)\)
\(\chi_{3503}(51,\cdot)\)
\(\chi_{3503}(72,\cdot)\)
\(\chi_{3503}(82,\cdot)\)
\(\chi_{3503}(100,\cdot)\)
\(\chi_{3503}(102,\cdot)\)
\(\chi_{3503}(138,\cdot)\)
\(\chi_{3503}(144,\cdot)\)
\(\chi_{3503}(164,\cdot)\)
\(\chi_{3503}(165,\cdot)\)
\(\chi_{3503}(174,\cdot)\)
\(\chi_{3503}(175,\cdot)\)
\(\chi_{3503}(195,\cdot)\)
\(\chi_{3503}(200,\cdot)\)
\(\chi_{3503}(204,\cdot)\)
\(\chi_{3503}(235,\cdot)\)
\(\chi_{3503}(237,\cdot)\)
\(\chi_{3503}(257,\cdot)\)
\(\chi_{3503}(262,\cdot)\)
\(\chi_{3503}(267,\cdot)\)
\(\chi_{3503}(276,\cdot)\)
\(\chi_{3503}(288,\cdot)\)
\(\chi_{3503}(289,\cdot)\)
\(\chi_{3503}(298,\cdot)\)
\(\chi_{3503}(317,\cdot)\)
\(\chi_{3503}(328,\cdot)\)
\(\chi_{3503}(330,\cdot)\)
\(\chi_{3503}(348,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3165,342)\) → \((e\left(\frac{7}{15}\right),e\left(\frac{23}{56}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 3503 }(165, a) \) |
\(1\) | \(1\) | \(e\left(\frac{9}{70}\right)\) | \(e\left(\frac{737}{840}\right)\) | \(e\left(\frac{9}{35}\right)\) | \(e\left(\frac{71}{168}\right)\) | \(e\left(\frac{1}{168}\right)\) | \(e\left(\frac{37}{105}\right)\) | \(e\left(\frac{27}{70}\right)\) | \(e\left(\frac{317}{420}\right)\) | \(e\left(\frac{463}{840}\right)\) | \(e\left(\frac{53}{420}\right)\) |
sage:chi.jacobi_sum(n)