| L(s) = 1 | + (0.691 + 0.722i)2-s + (0.717 − 0.696i)3-s + (−0.0448 + 0.998i)4-s + (−0.884 + 0.467i)5-s + (0.999 + 0.0373i)6-s + (−0.599 + 0.800i)7-s + (−0.753 + 0.657i)8-s + (0.0299 − 0.999i)9-s + (−0.948 − 0.316i)10-s + (0.701 + 0.712i)11-s + (0.663 + 0.748i)12-s + (0.486 + 0.873i)13-s + (−0.992 + 0.119i)14-s + (−0.309 + 0.951i)15-s + (−0.995 − 0.0896i)16-s + (−0.427 + 0.904i)17-s + ⋯ |
| L(s) = 1 | + (0.691 + 0.722i)2-s + (0.717 − 0.696i)3-s + (−0.0448 + 0.998i)4-s + (−0.884 + 0.467i)5-s + (0.999 + 0.0373i)6-s + (−0.599 + 0.800i)7-s + (−0.753 + 0.657i)8-s + (0.0299 − 0.999i)9-s + (−0.948 − 0.316i)10-s + (0.701 + 0.712i)11-s + (0.663 + 0.748i)12-s + (0.486 + 0.873i)13-s + (−0.992 + 0.119i)14-s + (−0.309 + 0.951i)15-s + (−0.995 − 0.0896i)16-s + (−0.427 + 0.904i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3503 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.695 - 0.718i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3503 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (-0.695 - 0.718i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(-0.4046056852 + 0.9554518115i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(-0.4046056852 + 0.9554518115i\) |
| \(L(1)\) |
\(\approx\) |
\(1.026718336 + 0.7266599685i\) |
| \(L(1)\) |
\(\approx\) |
\(1.026718336 + 0.7266599685i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 31 | \( 1 \) |
| 113 | \( 1 \) |
| good | 2 | \( 1 + (0.691 + 0.722i)T \) |
| 3 | \( 1 + (0.717 - 0.696i)T \) |
| 5 | \( 1 + (-0.884 + 0.467i)T \) |
| 7 | \( 1 + (-0.599 + 0.800i)T \) |
| 11 | \( 1 + (0.701 + 0.712i)T \) |
| 13 | \( 1 + (0.486 + 0.873i)T \) |
| 17 | \( 1 + (-0.427 + 0.904i)T \) |
| 19 | \( 1 + (-0.985 - 0.171i)T \) |
| 23 | \( 1 + (-0.928 + 0.372i)T \) |
| 29 | \( 1 + (0.0224 - 0.999i)T \) |
| 37 | \( 1 + (0.399 + 0.916i)T \) |
| 41 | \( 1 + (0.635 + 0.772i)T \) |
| 43 | \( 1 + (0.480 + 0.877i)T \) |
| 47 | \( 1 + (-0.979 - 0.200i)T \) |
| 53 | \( 1 + (-0.251 + 0.967i)T \) |
| 59 | \( 1 + (-0.696 - 0.717i)T \) |
| 61 | \( 1 + (0.781 - 0.623i)T \) |
| 67 | \( 1 + (0.804 + 0.593i)T \) |
| 71 | \( 1 + (-0.933 - 0.358i)T \) |
| 73 | \( 1 + (-0.777 - 0.629i)T \) |
| 79 | \( 1 + (0.00747 + 0.999i)T \) |
| 83 | \( 1 + (0.971 - 0.237i)T \) |
| 89 | \( 1 + (-0.822 - 0.569i)T \) |
| 97 | \( 1 + (0.753 + 0.657i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.76718496057840537930510304259, −17.68049259372927971686154624558, −16.51444225212158851672317830680, −16.09166393895061103941836098248, −15.60778002492625020628389774022, −14.637529537577379572426675509378, −14.227247134626979585619029426656, −13.376999318312553938621504447009, −12.91242079893945656487327907471, −12.12000263878693898396592825598, −11.17015623440856993221201087903, −10.74413946145843301129626725837, −10.07537821812869163420787857825, −9.12975482113038540000958680407, −8.71173486669161240535038819034, −7.77768727582991722817794539428, −6.87668697240833859796551895058, −5.94057986115197305003166677711, −5.043970759072480378733602934763, −4.1942968276466927556381045370, −3.80672685096027862938881456119, −3.24399174216517715313888561369, −2.363375232924595005106106260858, −1.14709425108916559501241069359, −0.21257258863302899435713077189,
1.71422962433559692583297300908, 2.47122973818284800062355633467, 3.26435080801927862469611271980, 4.10035803777946249325557959584, 4.4100959131913995217067448766, 6.07174442929245966789935877816, 6.390694436089070259426689066783, 6.899772689353969127289702763579, 7.903399179950095035056570667002, 8.30035763291003335968197099716, 9.07789677002405720017978862118, 9.76708933052815500379042473777, 11.23862588826108215360809792383, 11.787386090589285956130487317922, 12.42287320042583278446255074719, 12.95901311152457939932992817192, 13.69989055656659520101434718384, 14.604905315294693837942256339166, 14.89147709648277173611475340442, 15.550608872507472195950722748176, 16.12539341050539953337669551225, 17.09964274721073193018712259135, 17.811823101039944711119516200, 18.54925470048133457716659995913, 19.22940214030749455296550421311