sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(344, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([0,21,31]))
pari:[g,chi] = znchar(Mod(205,344))
Modulus: | \(344\) | |
Conductor: | \(344\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(42\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{344}(5,\cdot)\)
\(\chi_{344}(29,\cdot)\)
\(\chi_{344}(61,\cdot)\)
\(\chi_{344}(69,\cdot)\)
\(\chi_{344}(77,\cdot)\)
\(\chi_{344}(141,\cdot)\)
\(\chi_{344}(149,\cdot)\)
\(\chi_{344}(157,\cdot)\)
\(\chi_{344}(205,\cdot)\)
\(\chi_{344}(245,\cdot)\)
\(\chi_{344}(261,\cdot)\)
\(\chi_{344}(277,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((87,173,89)\) → \((1,-1,e\left(\frac{31}{42}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\( \chi_{ 344 }(205, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{1}{14}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)