L(s) = 1 | + (0.0747 + 0.997i)3-s + (0.955 − 0.294i)5-s + (0.5 − 0.866i)7-s + (−0.988 + 0.149i)9-s + (−0.623 − 0.781i)11-s + (0.733 + 0.680i)13-s + (0.365 + 0.930i)15-s + (0.955 + 0.294i)17-s + (−0.988 − 0.149i)19-s + (0.900 + 0.433i)21-s + (0.365 − 0.930i)23-s + (0.826 − 0.563i)25-s + (−0.222 − 0.974i)27-s + (0.0747 − 0.997i)29-s + (0.826 + 0.563i)31-s + ⋯ |
L(s) = 1 | + (0.0747 + 0.997i)3-s + (0.955 − 0.294i)5-s + (0.5 − 0.866i)7-s + (−0.988 + 0.149i)9-s + (−0.623 − 0.781i)11-s + (0.733 + 0.680i)13-s + (0.365 + 0.930i)15-s + (0.955 + 0.294i)17-s + (−0.988 − 0.149i)19-s + (0.900 + 0.433i)21-s + (0.365 − 0.930i)23-s + (0.826 − 0.563i)25-s + (−0.222 − 0.974i)27-s + (0.0747 − 0.997i)29-s + (0.826 + 0.563i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 344 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.954 - 0.298i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 344 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.954 - 0.298i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.413146451 - 0.3685260010i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.413146451 - 0.3685260010i\) |
\(L(1)\) |
\(\approx\) |
\(1.367746139 + 0.07265180198i\) |
\(L(1)\) |
\(\approx\) |
\(1.367746139 + 0.07265180198i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 43 | \( 1 \) |
good | 3 | \( 1 + (0.0747 + 0.997i)T \) |
| 5 | \( 1 + (0.955 - 0.294i)T \) |
| 7 | \( 1 + (0.5 - 0.866i)T \) |
| 11 | \( 1 + (-0.623 - 0.781i)T \) |
| 13 | \( 1 + (0.733 + 0.680i)T \) |
| 17 | \( 1 + (0.955 + 0.294i)T \) |
| 19 | \( 1 + (-0.988 - 0.149i)T \) |
| 23 | \( 1 + (0.365 - 0.930i)T \) |
| 29 | \( 1 + (0.0747 - 0.997i)T \) |
| 31 | \( 1 + (0.826 + 0.563i)T \) |
| 37 | \( 1 + (-0.5 - 0.866i)T \) |
| 41 | \( 1 + (-0.900 + 0.433i)T \) |
| 47 | \( 1 + (0.623 - 0.781i)T \) |
| 53 | \( 1 + (0.733 - 0.680i)T \) |
| 59 | \( 1 + (0.222 + 0.974i)T \) |
| 61 | \( 1 + (0.826 - 0.563i)T \) |
| 67 | \( 1 + (0.988 + 0.149i)T \) |
| 71 | \( 1 + (-0.365 - 0.930i)T \) |
| 73 | \( 1 + (0.733 + 0.680i)T \) |
| 79 | \( 1 + (-0.5 + 0.866i)T \) |
| 83 | \( 1 + (-0.0747 - 0.997i)T \) |
| 89 | \( 1 + (-0.0747 - 0.997i)T \) |
| 97 | \( 1 + (0.623 + 0.781i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.991051671729529414491143048461, −23.81000274040688550542843637089, −23.09832731556078783671615631159, −22.115422381054346673279045278452, −21.02418702420727241106740574499, −20.490264244220763485504110468696, −19.0155881222488338517054189245, −18.46781739359795971974275236501, −17.72609889320712130284422956368, −17.07389914642022030477361062286, −15.488599825383649378169863721783, −14.70187848313639232397222853004, −13.74510996434558738247210352324, −12.91256136926170531856099211034, −12.160461358989255430969892308122, −11.019100074978766291603834304938, −9.97997104731390452914625624745, −8.792256378759239175408487229182, −7.94723550450739583765780738446, −6.86210850233213737680254149803, −5.805174782005812662186092074134, −5.175787704460091418324692692347, −3.11029751163829433558901940915, −2.19098412459483893073682995516, −1.250066328915178829771576513643,
0.74575995761542148801466959451, 2.25182643648491445678401563386, 3.612824050792915282973497158705, 4.61271021601745766867941037356, 5.56184301820496617562144419175, 6.56084137725837422875876535774, 8.237563803440320413802298199250, 8.8186581702912091676613399877, 10.165812807211015604918451794214, 10.53102330520861889185013497758, 11.57659316218069888340492872899, 13.08275763459530153574716175769, 13.91943747931895758196018717322, 14.52849245629044958837969093093, 15.772430959851606062986200805057, 16.77258900063433551924140659877, 17.07222877971651021807916975036, 18.317540930975572019524989524792, 19.40229944600627239782383816478, 20.64572815403341426278503055644, 21.14861340855310539699552643497, 21.54893492336393597047464459449, 22.91656241441695208797325577289, 23.61945911203139076343158223275, 24.69408613624184154184073554783