sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(343, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([4]))
pari:[g,chi] = znchar(Mod(116,343))
\(\chi_{343}(30,\cdot)\)
\(\chi_{343}(67,\cdot)\)
\(\chi_{343}(79,\cdot)\)
\(\chi_{343}(116,\cdot)\)
\(\chi_{343}(128,\cdot)\)
\(\chi_{343}(165,\cdot)\)
\(\chi_{343}(177,\cdot)\)
\(\chi_{343}(214,\cdot)\)
\(\chi_{343}(226,\cdot)\)
\(\chi_{343}(263,\cdot)\)
\(\chi_{343}(275,\cdot)\)
\(\chi_{343}(312,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(3\) → \(e\left(\frac{2}{21}\right)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
\( \chi_{ 343 }(116, a) \) |
\(1\) | \(1\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{1}{21}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)