sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(34272, base_ring=CyclotomicField(48))
M = H._module
chi = DirichletCharacter(H, M([24,0,40,8,21]))
pari:[g,chi] = znchar(Mod(34079,34272))
\(\chi_{34272}(3071,\cdot)\)
\(\chi_{34272}(3839,\cdot)\)
\(\chi_{34272}(5855,\cdot)\)
\(\chi_{34272}(7103,\cdot)\)
\(\chi_{34272}(9119,\cdot)\)
\(\chi_{34272}(9887,\cdot)\)
\(\chi_{34272}(11903,\cdot)\)
\(\chi_{34272}(13151,\cdot)\)
\(\chi_{34272}(15167,\cdot)\)
\(\chi_{34272}(15935,\cdot)\)
\(\chi_{34272}(19199,\cdot)\)
\(\chi_{34272}(23999,\cdot)\)
\(\chi_{34272}(26015,\cdot)\)
\(\chi_{34272}(27263,\cdot)\)
\(\chi_{34272}(29279,\cdot)\)
\(\chi_{34272}(34079,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2143,29989,3809,14689,14113)\) → \((-1,1,e\left(\frac{5}{6}\right),e\left(\frac{1}{6}\right),e\left(\frac{7}{16}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 34272 }(34079, a) \) |
\(1\) | \(1\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{23}{48}\right)\) |
sage:chi.jacobi_sum(n)