sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(34272, base_ring=CyclotomicField(48))
M = H._module
chi = DirichletCharacter(H, M([0,18,8,32,33]))
pari:[g,chi] = znchar(Mod(21053,34272))
Modulus: | \(34272\) | |
Conductor: | \(34272\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(48\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{34272}(7205,\cdot)\)
\(\chi_{34272}(10229,\cdot)\)
\(\chi_{34272}(10469,\cdot)\)
\(\chi_{34272}(10733,\cdot)\)
\(\chi_{34272}(12245,\cdot)\)
\(\chi_{34272}(13493,\cdot)\)
\(\chi_{34272}(13997,\cdot)\)
\(\chi_{34272}(15269,\cdot)\)
\(\chi_{34272}(15509,\cdot)\)
\(\chi_{34272}(17789,\cdot)\)
\(\chi_{34272}(18533,\cdot)\)
\(\chi_{34272}(21053,\cdot)\)
\(\chi_{34272}(21821,\cdot)\)
\(\chi_{34272}(25085,\cdot)\)
\(\chi_{34272}(28877,\cdot)\)
\(\chi_{34272}(32141,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2143,29989,3809,14689,14113)\) → \((1,e\left(\frac{3}{8}\right),e\left(\frac{1}{6}\right),e\left(\frac{2}{3}\right),e\left(\frac{11}{16}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 34272 }(21053, a) \) |
\(1\) | \(1\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{31}{48}\right)\) |
sage:chi.jacobi_sum(n)