Properties

Label 33957.ik
Modulus $33957$
Conductor $33957$
Order $1470$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(33957, base_ring=CyclotomicField(1470)) M = H._module chi = DirichletCharacter(H, M([245,970,147])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(2,33957)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(33957\)
Conductor: \(33957\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(1470\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{735})$
Fixed field: Number field defined by a degree 1470 polynomial (not computed)

First 17 of 336 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(8\) \(10\) \(13\) \(16\) \(17\) \(19\) \(20\)
\(\chi_{33957}(2,\cdot)\) \(1\) \(1\) \(e\left(\frac{206}{735}\right)\) \(e\left(\frac{412}{735}\right)\) \(e\left(\frac{181}{490}\right)\) \(e\left(\frac{206}{245}\right)\) \(e\left(\frac{191}{294}\right)\) \(e\left(\frac{727}{1470}\right)\) \(e\left(\frac{89}{735}\right)\) \(e\left(\frac{659}{735}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{1367}{1470}\right)\)
\(\chi_{33957}(95,\cdot)\) \(1\) \(1\) \(e\left(\frac{247}{735}\right)\) \(e\left(\frac{494}{735}\right)\) \(e\left(\frac{487}{490}\right)\) \(e\left(\frac{2}{245}\right)\) \(e\left(\frac{97}{294}\right)\) \(e\left(\frac{1439}{1470}\right)\) \(e\left(\frac{253}{735}\right)\) \(e\left(\frac{73}{735}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{979}{1470}\right)\)
\(\chi_{33957}(347,\cdot)\) \(1\) \(1\) \(e\left(\frac{559}{735}\right)\) \(e\left(\frac{383}{735}\right)\) \(e\left(\frac{19}{490}\right)\) \(e\left(\frac{69}{245}\right)\) \(e\left(\frac{235}{294}\right)\) \(e\left(\frac{1013}{1470}\right)\) \(e\left(\frac{31}{735}\right)\) \(e\left(\frac{436}{735}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{823}{1470}\right)\)
\(\chi_{33957}(380,\cdot)\) \(1\) \(1\) \(e\left(\frac{659}{735}\right)\) \(e\left(\frac{583}{735}\right)\) \(e\left(\frac{359}{490}\right)\) \(e\left(\frac{169}{245}\right)\) \(e\left(\frac{185}{294}\right)\) \(e\left(\frac{1423}{1470}\right)\) \(e\left(\frac{431}{735}\right)\) \(e\left(\frac{656}{735}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{773}{1470}\right)\)
\(\chi_{33957}(536,\cdot)\) \(1\) \(1\) \(e\left(\frac{58}{735}\right)\) \(e\left(\frac{116}{735}\right)\) \(e\left(\frac{403}{490}\right)\) \(e\left(\frac{58}{245}\right)\) \(e\left(\frac{265}{294}\right)\) \(e\left(\frac{1061}{1470}\right)\) \(e\left(\frac{232}{735}\right)\) \(e\left(\frac{157}{735}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{1441}{1470}\right)\)
\(\chi_{33957}(662,\cdot)\) \(1\) \(1\) \(e\left(\frac{466}{735}\right)\) \(e\left(\frac{197}{735}\right)\) \(e\left(\frac{281}{490}\right)\) \(e\left(\frac{221}{245}\right)\) \(e\left(\frac{61}{294}\right)\) \(e\left(\frac{617}{1470}\right)\) \(e\left(\frac{394}{735}\right)\) \(e\left(\frac{349}{735}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{1237}{1470}\right)\)
\(\chi_{33957}(695,\cdot)\) \(1\) \(1\) \(e\left(\frac{431}{735}\right)\) \(e\left(\frac{127}{735}\right)\) \(e\left(\frac{211}{490}\right)\) \(e\left(\frac{186}{245}\right)\) \(e\left(\frac{5}{294}\right)\) \(e\left(\frac{547}{1470}\right)\) \(e\left(\frac{254}{735}\right)\) \(e\left(\frac{419}{735}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{887}{1470}\right)\)
\(\chi_{33957}(788,\cdot)\) \(1\) \(1\) \(e\left(\frac{517}{735}\right)\) \(e\left(\frac{299}{735}\right)\) \(e\left(\frac{327}{490}\right)\) \(e\left(\frac{27}{245}\right)\) \(e\left(\frac{109}{294}\right)\) \(e\left(\frac{929}{1470}\right)\) \(e\left(\frac{598}{735}\right)\) \(e\left(\frac{373}{735}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{109}{1470}\right)\)
\(\chi_{33957}(821,\cdot)\) \(1\) \(1\) \(e\left(\frac{722}{735}\right)\) \(e\left(\frac{709}{735}\right)\) \(e\left(\frac{387}{490}\right)\) \(e\left(\frac{232}{245}\right)\) \(e\left(\frac{227}{294}\right)\) \(e\left(\frac{79}{1470}\right)\) \(e\left(\frac{683}{735}\right)\) \(e\left(\frac{383}{735}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{1109}{1470}\right)\)
\(\chi_{33957}(1040,\cdot)\) \(1\) \(1\) \(e\left(\frac{724}{735}\right)\) \(e\left(\frac{713}{735}\right)\) \(e\left(\frac{139}{490}\right)\) \(e\left(\frac{234}{245}\right)\) \(e\left(\frac{79}{294}\right)\) \(e\left(\frac{293}{1470}\right)\) \(e\left(\frac{691}{735}\right)\) \(e\left(\frac{211}{735}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{373}{1470}\right)\)
\(\chi_{33957}(1073,\cdot)\) \(1\) \(1\) \(e\left(\frac{254}{735}\right)\) \(e\left(\frac{508}{735}\right)\) \(e\left(\frac{109}{490}\right)\) \(e\left(\frac{9}{245}\right)\) \(e\left(\frac{167}{294}\right)\) \(e\left(\frac{1453}{1470}\right)\) \(e\left(\frac{281}{735}\right)\) \(e\left(\frac{206}{735}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{1343}{1470}\right)\)
\(\chi_{33957}(1229,\cdot)\) \(1\) \(1\) \(e\left(\frac{328}{735}\right)\) \(e\left(\frac{656}{735}\right)\) \(e\left(\frac{243}{490}\right)\) \(e\left(\frac{83}{245}\right)\) \(e\left(\frac{277}{294}\right)\) \(e\left(\frac{551}{1470}\right)\) \(e\left(\frac{577}{735}\right)\) \(e\left(\frac{457}{735}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{571}{1470}\right)\)
\(\chi_{33957}(1262,\cdot)\) \(1\) \(1\) \(e\left(\frac{638}{735}\right)\) \(e\left(\frac{541}{735}\right)\) \(e\left(\frac{23}{490}\right)\) \(e\left(\frac{148}{245}\right)\) \(e\left(\frac{269}{294}\right)\) \(e\left(\frac{1381}{1470}\right)\) \(e\left(\frac{347}{735}\right)\) \(e\left(\frac{257}{735}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{1151}{1470}\right)\)
\(\chi_{33957}(1355,\cdot)\) \(1\) \(1\) \(e\left(\frac{316}{735}\right)\) \(e\left(\frac{632}{735}\right)\) \(e\left(\frac{261}{490}\right)\) \(e\left(\frac{71}{245}\right)\) \(e\left(\frac{283}{294}\right)\) \(e\left(\frac{737}{1470}\right)\) \(e\left(\frac{529}{735}\right)\) \(e\left(\frac{19}{735}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{577}{1470}\right)\)
\(\chi_{33957}(1388,\cdot)\) \(1\) \(1\) \(e\left(\frac{236}{735}\right)\) \(e\left(\frac{472}{735}\right)\) \(e\left(\frac{381}{490}\right)\) \(e\left(\frac{236}{245}\right)\) \(e\left(\frac{29}{294}\right)\) \(e\left(\frac{997}{1470}\right)\) \(e\left(\frac{209}{735}\right)\) \(e\left(\frac{284}{735}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{617}{1470}\right)\)
\(\chi_{33957}(1481,\cdot)\) \(1\) \(1\) \(e\left(\frac{682}{735}\right)\) \(e\left(\frac{629}{735}\right)\) \(e\left(\frac{447}{490}\right)\) \(e\left(\frac{192}{245}\right)\) \(e\left(\frac{247}{294}\right)\) \(e\left(\frac{209}{1470}\right)\) \(e\left(\frac{523}{735}\right)\) \(e\left(\frac{148}{735}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{1129}{1470}\right)\)
\(\chi_{33957}(1514,\cdot)\) \(1\) \(1\) \(e\left(\frac{317}{735}\right)\) \(e\left(\frac{634}{735}\right)\) \(e\left(\frac{137}{490}\right)\) \(e\left(\frac{72}{245}\right)\) \(e\left(\frac{209}{294}\right)\) \(e\left(\frac{109}{1470}\right)\) \(e\left(\frac{533}{735}\right)\) \(e\left(\frac{668}{735}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{209}{1470}\right)\)