sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(33957, base_ring=CyclotomicField(1470))
M = H._module
chi = DirichletCharacter(H, M([1225,1370,1029]))
pari:[g,chi] = znchar(Mod(95,33957))
| Modulus: | \(33957\) | |
| Conductor: | \(33957\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(1470\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{33957}(2,\cdot)\)
\(\chi_{33957}(95,\cdot)\)
\(\chi_{33957}(347,\cdot)\)
\(\chi_{33957}(380,\cdot)\)
\(\chi_{33957}(536,\cdot)\)
\(\chi_{33957}(662,\cdot)\)
\(\chi_{33957}(695,\cdot)\)
\(\chi_{33957}(788,\cdot)\)
\(\chi_{33957}(821,\cdot)\)
\(\chi_{33957}(1040,\cdot)\)
\(\chi_{33957}(1073,\cdot)\)
\(\chi_{33957}(1229,\cdot)\)
\(\chi_{33957}(1262,\cdot)\)
\(\chi_{33957}(1355,\cdot)\)
\(\chi_{33957}(1388,\cdot)\)
\(\chi_{33957}(1481,\cdot)\)
\(\chi_{33957}(1514,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((18866,14752,24697)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{137}{147}\right),e\left(\frac{7}{10}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(13\) | \(16\) | \(17\) | \(19\) | \(20\) |
| \( \chi_{ 33957 }(95, a) \) |
\(1\) | \(1\) | \(e\left(\frac{247}{735}\right)\) | \(e\left(\frac{494}{735}\right)\) | \(e\left(\frac{487}{490}\right)\) | \(e\left(\frac{2}{245}\right)\) | \(e\left(\frac{97}{294}\right)\) | \(e\left(\frac{1439}{1470}\right)\) | \(e\left(\frac{253}{735}\right)\) | \(e\left(\frac{73}{735}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{979}{1470}\right)\) |
sage:chi.jacobi_sum(n)